Ключевые слова

Нейрообразование, электроэнцефалография, нейрофизиологические измерения в образовании, начальное образование, начальная школа, образовательный контекст, анализ конкретных случаев

Резюме

Новые беспроводные устройства для электроэнцефалографии (ЭЭГ) позволяют делать записи в нелабораторных условиях. Однако при их использовании необходимо учитывать многие детали. Данная статья, основанная на инструментальном конкретном исследовании с группой учащихся третьего класса начальной школы, призвана показать некоторые потенциальные возможности и ограничения исследований с использованием этих устройств в образовательных контекстах. В развитии этого опыта можно увидеть некоторые соотношения: между интересами и возможностями исследовательских групп и образовательных сообществ; между искажением жизни в классе и возможностями сотрудничества между наукой и практикой; между бюджетом и легкостью подготовки групп и полезностью собранных данных. Среди их потенциала - знания, к которым они позволяют получить доступ о различных когнитивных и эмоциональных процессах, и возможность обучения, обеспечиваемая связями между исследователями и образовательными сообществами. Жизнь класса нарушается в результате такого рода опыта, но это может быть ценой, которая способствует более интегрированным будущим разработкам, приносящим пользу процессам преподавания и обучения.

Посмотреть инфографику

Ссылки

Akalin-Acar, Z., & Makeig, S. (2013). Effects of forward model errors on EEG source localization. Brain topography, 26(3), 378-396. https://doi.org/10.1007/s10548-012-0274-6

Link DOI | Link Google Scholar

Antonenko, P., Paas, F., Grabner, R., & Van-Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22(4), 425-438. https://doi.org/10.1007/s10648-010-9130-y

Link DOI | Link Google Scholar

Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (1999). Oscillatory brain theory: A new trend in neuroscience. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society, 18(3), 56-66. https://doi.org/10.1109/51.765190

Link DOI | Link Google Scholar

Bevilacqua, D., Davidesco, I., Wan, L., Chaloner, K., Rowland, J., Ding, M., Poeppel, D., & Dikker, S. (2019). Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: evidence from a real-world classroom electroencephalography study. Journal of Cognitive Neuroscience, 31(3), 401-11. https://doi.org/10.1162/jocn_a_01274

Link DOI | Link Google Scholar

Browarska, N., Kawala-Sterniuk, A., Zygarlicki, J., Podpora, M., Pelc, M., Martinek, R., & Gorzelanczyk, E.J. (2021). Comparison of smoothing filters' influence on quality of data recorded with the emotiv EPOC Flex brain-computer interface headset during audio stimulation. Brain sciences, 11(1), 98. https://doi.org/10.3390/brainsci11010098

Link DOI | Link Google Scholar

Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42. https://doi.org/10.3102/0013189X018001032

Link DOI | Link Google Scholar

Coan, J.A., & Allen, J.J. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1-2), 7-50. https://doi.org/10.1016/j.biopsycho.2004.03.002

Link DOI | Link Google Scholar

Craik, A., He, Y., & Contreras-Vidal, J.J. (2019). Deep learning for electroencephalogram (EEG) classification tasks: A review. Journal of Neural Engineering, 16(3), 031001. https://doi.org/10.1088/1741-2552/ab0ab5

Link DOI | Link Google Scholar

Dikker, S., Haegens, S., Bevilacqua, D., Davidesco, I., Wan, L., Kaggen, L., McClintock, J., Chaloner, K., Ding, M., West, T., & Poeppel, D. (2020). Morning brain: Real-world neural evidence that high school class times matter. Social Cognitive and Affective Neuroscience, 15(11), 1193-1202. https://doi.org/10.1093/scan/nsaa142

Link DOI | Link Google Scholar

Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Michalareas, G., Van Bavel, J.J., Ding, M., & Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375-80. https://doi.org/10.1016/j.cub.2017.04.002

Link DOI | Link Google Scholar

Glaser, B., & Strauss, A. (2006). The discovery of grounded theory. Aldine Transaction.

Link Google Scholar

Grammer, J.K., Xu, K., & Lenartowicz, A. (2021). Effects of context on the neural correlates of attention in a college classroom. NPJ science of learning, 6(1), 15. https://doi.org/10.1038/s41539-021-00094-8

Link DOI | Link Google Scholar

Hajare, R., & Kadam, S. (2021). Comparative study analysis of practical EEG sensors in medical diagnoses. Global Transitions Proceedings, 2(2), 467-475. https://doi.org/10.1016/j.gltp.2021.08.009

Link DOI | Link Google Scholar

Howard-Jones, P.A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., Laurillard, D., & Thomas, M.S.C. (2016). The principles and practices of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 620-627. https://doi.org/10.1037/rev0000036

Link DOI | Link Google Scholar

Janssen, T.W.P., Grammer, J.K., Bleichner, M.G., Bulgarelli, C., Davidesco, I., Dikker, S., Jasi?ska, K.K., Siugzdaite, R., Vassena, E., Vatakis, A., Zion-Golumbic, E., & van Atteveldt, N. (2021). Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience. Mind, Brain and Education, 15(4), 354-370. https://doi.org/10.1111/mbe.12302

Link DOI | Link Google Scholar

Katzir, T., & Paré-Blagoev, J. (2006). Applying cognitive neuroscience research to education: The case of literacy. Educational Psychologist, 41(1), 53-74. https://doi.org/10.1207/s15326985ep4101_6

Link DOI | Link Google Scholar

Khedher, A.B., Jraidi, I., & Frasson, C. (2019). Tracking students’ mental engagement using EEG signals during an interaction with a virtual learning environment. Journal of Intelligent Learning Systems and Applications, 11(1), 1-14. https://doi.org/10.4236/jilsa.2019.111001

Link DOI | Link Google Scholar

Krigolson, O.E., Williams, C.C., Norton, A., Hassall, C.D., & Colino, F.L. (2017). Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Frontiers in Neuroscience, 11, 109. https://doi.org/10.3389/fnins.2017.00109

Link DOI | Link Google Scholar

Lau-Zhu, A., Lau, M.P.H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635

Link DOI | Link Google Scholar

Liu, Y., & Zhang, Y. (2021). Developing sustaining authentic partnership between MBE researchers and local schools. Mind, Brain, and Education, 15(2), 153-162. https://doi.org/10.1111/mbe.12280

Link DOI | Link Google Scholar

Mason L. (2009). Bridging neuroscience and education: A two-way path is possible. Cortex, 45(4), 548-549. https://doi.org/10.1016/j.cortex.2008.06.003

Link DOI | Link Google Scholar

Matusz, P.J., Dikker, S., Huth, A.G., & Perrodin, C. (2019). Are we ready for real-world neuroscience? Journal of Cognitive Neuroscience, 31(3), 327-338. https://doi.org/10.1162/jocn_e_01276

Link DOI | Link Google Scholar

McMahan, T., Parberry, I., & Parsons, T.D. (2015). Evaluating player task engagement and arousal using electroencephalography. Procedia Manufacturing, 3, 2303-2310. https://doi.org/10.1016/j.promfg.2015.07.376

Link DOI | Link Google Scholar

Pope, A.T., Bogart, E.H., & Bartolome, D.S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40(1-2), 187-195. https://doi.org/10.1016/0301-0511(95)05116-3

Link DOI | Link Google Scholar

Rose, N., & Abi-Rached, J. (2014). Governing through the brain: Neuropolitics, neuroscience and subjectivity. The Cambridge Journal of Anthropology, 32(1), 3-23. https://doi.org/10.3167/ca.2014.320102

Link DOI | Link Google Scholar

Shad, E.H.T., Molinas, M., & Ytterdal, T. (2020). Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sensors Journal, 20(24), 14565-14577. https://doi.org/10.1109/JSEN.2020.3012394

Link DOI | Link Google Scholar

Shamay-Tsoory, S.G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841-859. https://doi.org/10.1177/1745691619856350

Link DOI | Link Google Scholar

Shkedi, A. (2004). Second?order theoretical analysis: A method for constructing theoretical explanation. International Journal of Qualitative Studies in Education, 17(5), 627-646. https://doi.org/10.1080/0951839042000253630

Link DOI | Link Google Scholar

Stake, R.E. (2010). Qualitative research: Studying how things work. Guilford Publications. https://bit.ly/3J0mmNf

Link Google Scholar

Vekety, B., Logemann, A., & Takacs, Z.K. (2022). Mindfulness practice with a brain-sensing device improved cognitive functioning of elementary school children: An exploratory pilot study. Brain Sciences, 12(1), 103. https://doi.org/10.3390/brainsci12010103

Link DOI | Link Google Scholar

Williams, N.S., McArthur, G.M., & Badcock, N.A. (2020a). 10 years of EPOC: A scoping review of Emotiv’s portable EEG device. BioRxiv. https://doi.org/10.1101/2020.07.14.202085

Link DOI | Link Google Scholar

Williams, N.S., McArthur, G.M., de-Wit, B., Ibrahim, G., & Badcock, N.A. (2020b). A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ, 8, e9713. https://doi.org/10.7717/peerj.9713

Link DOI | Link Google Scholar

Williamson, B. (2018). Brain data: Scanning, scraping and sculpting the plastic learning brain through neurotechnology. Postdigital Science and Education, 1, 65-86. https://doi.org/10.1007/s42438-018-0008-5

Link DOI | Link Google Scholar

Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational research. Computers in Human Behavior, 81, 340-349. https://doi.org/10.1111/mbe.12314

Link DOI | Link Google Scholar

Xu, K., Torgrimson, S.J., Torres, R., Lenartowicz, A., & Grammer, J.K. (2022). EEG data quality in real?world settings: Examining neural correlates of attention in school?aged children. Mind, Brain, and Education, 16(3), 221-227. https://doi.org.ponton.uva.es/10.1111/mbe.12314

Link DOI | Link Google Scholar

Zerafa, R., Camilleri, T., Falzon, O., & Camilleri, K.P. (2018). A comparison of a broad range of EEG acquisition devices– is there any difference for SSVEP BCIs? Brain-Computer Interfaces, 5(4), 121-131 https://doi.org/10.1080/2326263X.2018.1550710

Link DOI | Link Google Scholar

Fundref

Crossmark

Техническая спецификация

Получила: 28-12-2022

пересмотренный: 18-01-2023

Принятый: 23-02-2023

OnlineFirst: 30-05-2023

Дата публикации: 01-07-2023

Время пересмотра статьи: 21 дней | Среднее время пересмотра вопроса 76: -6 дней

Время принятия статьи: 57 дней | Время приема Номер 76: 72 дней

Время редактирования препринта: 139 дней | Выпуск препринта среднего времени редактирования 76: 154 дней

Время редактирования статьи: 184 дней | Среднее время редактирования журнала 76: 199 дней

метрика

Метрики этой статьи

Просмотров: 44553

Ознакомление с аннотациями: 43831

загрузки PDF-файлов: 722

Полные метрики 76

Просмотров: 366998

Ознакомление с аннотациями: 358699

загрузки PDF-файлов: 8299

Цитируется

Цитаты в Web of Science

В настоящее время нет ссылок на этот документ

Цитаты в Scopus

В настоящее время нет ссылок на этот документ

Цитаты в Google Scholar

В настоящее время нет ссылок на этот документ

Скачать

Альтернативные метрики

Как процитировать

García-Monge, A., Rodríguez-Navarro, H., & Marbán, J. (2023). Potentialities and limitations of the use of EEG devices in educational contexts. [Potencialidades y limitaciones de la usabilidad de dispositivos EEG en contextos educativos]. Comunicar, 76, 47-58. https://doi.org/10.3916/C76-2023-04

Доля

           

Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul United Kingdom

Администрация

Редакция

Creative Commons

Данный сайт использует куки-файлы для получения статистических данных о навигации своих пользователей. Если вы продолжите просмотр, мы считаем, что вы принимаете его использование. +info X