Palavras chave

Ambiente virtual, aprendizado baseado em jogos, aprendizado de máquina, registro do olhar, extração de características, neuroeducação

Resumo

Atualmente, o uso de dados de rastreamento ocular em ambientes imersivos de aprendizagem de Realidade Virtual (iAVR) está destinado a ser uma ferramenta fundamental para maximizar os resultados de aprendizagem, dada a natureza não intrusiva do rastreamento ocular e sua integração em óculos comerciais de realidade virtual. Mas, antes que o uso de rastreamento ocular em ambientes de aprendizagem possa ser generalizado, as tecnologias mais adequadas para processamento de dados devem ser identificadas. Esta pesquisa propõe o uso de técnicas de aprendizado de máquina para esse fim, avaliando suas habilidades para classificar a qualidade do ambiente de aprendizagem e prever o desempenho de aprendizado do usuário. Para isso, foi desenvolvida uma experiência de ensino em iAVR para aprender o manuseio de uma ponte rolante. Com esta experiência, avaliou-se o desempenho de 63 alunos, tanto em condições ótimas de aprendizagem como em condições com estressores. O conjunto de dados final inclui 25 feições, sendo a maioria composta por séries temporais com um tamanho de conjunto de dados superior a 50 milhões de pontos. Os resultados mostram que a aplicação de diferentes classificações como KNN, SVM ou Random Forest tem alta precisão na previsão de alterações de aprendizagem, enquanto a previsão do desempenho de aprendizagem do usuário ainda está longe do ideal, o que abre uma linha de pesquisa futura. Este estudo visa servir como base para melhorias futuras na precisão do modelo, usando técnicas de aprendizado de máquina mais complexas.

Ver infografia

Referências

Añaños-Carrasco, E. (2015). Eyetracker technology in elderly people: How integrated television content is paid attention to and processed. [La tecnología del «EyeTracker» en adultos mayores: Cómo se atienden y procesan los contenidos integrados de televisión]. Comunicar, 45, 75-83. https://doi.org/10.3916/C45-2015-08

Link DOI | Link Google Scholar

Asish, S.M., Kulshreshth, A.K., & Borst, C.W. (2022). Detecting distracted students in educational VR environments using machine learning on eye gaze data. Computers & Graphics, 109, 75-87. https://doi.org/10.1016/j.cag.2022.10.007

Link DOI | Link Google Scholar

Bowman, D.A., & McMahan, R.P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36-43. https://doi.org/10.1109/MC.2007.257

Link DOI | Link Google Scholar

Checa, D., & Bustillo, A. (2020). A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 79(9-10), 5501–5527. https://doi.org/10.1007/s11042-019-08348-9

Link DOI | Link Google Scholar

Checa, D., & Bustillo, A. (2022). Grua Rv. http://3dubu.Es/En/Cranevr/

Link Google Scholar

Checa, D., Gatto, C., Cisternino, D., de Paolis, L.T., & Bustillo, A. (2020). A Framework for Educational and Training Immersive Virtual Reality Experiences. In L.T. de-Paolis & P. Bourdot (Eds.), Augmented reality, virtual reality, and computer graphics (pp. 220–228). Springer International Publishing. https://doi.org/10.1007/978-3-030-58468-9_17

Link DOI | Link Google Scholar

Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A.W. (2018). Time series feature extraction on basis of scalable hypothesis tests (tsfresh – A Python package). Neurocomputing, 307, 72-77. https://doi.org/https://doi.org/10.1016/j.neucom.2018.03.067

Link Google Scholar

Christ, M., Kempa-Liehr, A., & Feindt, M. (2016). Distributed and parallel time series feature extraction for industrial big data applications. ArXiv, 1, https://doi.org/10.48550/arXiv.1610.07717.

Link DOI | Link Google Scholar

Cowan, A., Chen, J., Mingo, S., Reddy, S.S., Ma, R., Marshall, S., Nguyen, J.H., & Hung, A.J. (2021). virtual reality vs dry laboratory models: Comparing automated performance metrics and cognitive workload during robotic simulation training. Journal of Endourology, 35(10), 1571-1576. https://doi.org/10.1089/end.2020.1037

Link DOI | Link Google Scholar

Dale, E. (1946). Audiovisual methods in teaching. Dryden Press. https://bit.ly/42aW03X

Link Google Scholar

Dalgarno, B., & Lee, M.J.W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1). https://doi.org/10.1111/j.1467-8535.2009.01038.x

Link DOI | Link Google Scholar

Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69. https://doi.org/10.1126/science.1167311

Link DOI | Link Google Scholar

Deng, Q., Wang, J., Hillebrand, K., Benjamin, C.R., & Soffker, D. (2020). Prediction performance of lane changing behaviors: A study of combining environmental and eye-tracking data in a driving simulator. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3561-3570. https://doi.org/10.1109/TITS.2019.2937287

Link DOI | Link Google Scholar

Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455-470. https://doi.org/10.3758/BF03195475

Link DOI | Link Google Scholar

Farran, E., Formby, S., Daniyal, F., Holmes, T., & Herwegen, J. (2016). Route-learning strategies in typical and atypical development; eye-tracking reveals atypical landmark selection in Williams syndrome: Route-learning and eye-tracking. Journal of Intellectual Disability Research, 60(10), 933-944. https://doi.org/10.1111/jir.12331

Link DOI | Link Google Scholar

García-Carrasco, J., Hernández-Serrano, M.J., & Martín-García, A.V. (2015). Plasticity as a framing concept enabling transdisciplinary understanding and research in neuroscience and education. Learning, Media and Technology, 40(2), 152-167. https://doi.org/10.1080/17439884.2014.908907

Link DOI | Link Google Scholar

Gardony, A.L., Lindeman, R.W., & Brunyé, T.T. (2020). Eye-tracking for human-centered mixed reality: Promises and challenges. Proc.SPIE, 11310, 113100T. https://doi.org/10.1117/12.2542699

Link DOI | Link Google Scholar

Glennon, J.M., D’Souza, H., Mason, L., Karmiloff-Smith, A., & Thomas, M.S.C. (2020). Visuo-attentional correlates of Autism Spectrum Disorder (ASD) in children with Down syndrome: A comparative study with children with idiopathic ASD. Research in Developmental Disabilities, 104, 103678. https://doi.org/10.1016/j.ridd.2020.103678

Link DOI | Link Google Scholar

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2008). The WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1), 10-18. https://doi.org/10.1145/1656274.1656278

Link DOI | Link Google Scholar

Huang, H.M., Rauch, U., & Liaw, S.S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers and Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014

Link DOI | Link Google Scholar

Lapborisuth, P., Koorathota, S., Wang, Q., & Sajda, P. (2021). Integrating neural and ocular attention reorienting signals in virtual reality. Journal of Neural Engineering, 18(6), 066052. https://doi.org/10.1088/1741-2552/ac4593

Link DOI | Link Google Scholar

Ma, X., Yao, Z., Wang, Y., Pei, W., & Chen, H. (2018). Combining brain-computer interface and eye-tracking for high-speed text entry in virtual reality. In Berkovsky & Y. Hijikata (Ed.), IUI ’18: 23rd International Conference on Intelligent User Interfaces (pp. 263-267). https://doi.org/10.1145/3172944.3172988

Link DOI | Link Google Scholar

Martinez, K., Menéndez-Menéndez, M.I., & Bustillo, A. (2021). Awareness, prevention, detection, and therapy applications for depression and anxiety in serious games for children and adolescents: Systematic review. JMIR Serious Games, 9(4), e30482. https://doi.org/10.2196/30482

Link DOI | Link Google Scholar

Mckinney, W. (2011). pandas: A foundational Python library for data analysis and statistics. Python High Performance Science Computer.

Link Google Scholar

Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Luebke, D., & Lefohn, A. (2016). Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph., 35(6), 1-12. https://doi.org/10.1145/2980179.2980246

Link DOI | Link Google Scholar

Pritchard, A. (2017). Ways of learning: Learning theories for the classroom. Routledge. https://doi.org/10.4324/9781315460611

Link DOI | Link Google Scholar

Rappa, N.A., Ledger, S., Teo, T., Wai Wong, K., Power, B., & Hilliard, B. (2022). The use of eye-tracking technology to explore learning and performance within virtual reality and mixed reality settings: A scoping review. Interactive Learning Environments, 30(7), 1338-1350. https://doi.org/10.1080/10494820.2019.1702560

Link DOI | Link Google Scholar

Rodero, E., & Larrea, O. (2022). Virtual reality with distractors to overcome public speaking anxiety in university students; [Realidad virtual con distractores para superar el miedo a hablar en público en universitarios]. Comunicar, 30(72). https://doi.org/10.3916/C72-2022-07

Link DOI | Link Google Scholar

Shadiev, R., & Li, D. (2022). A review study on eye-tracking technology usage in immersive virtual reality learning environments. Computers & Education, 104681. https://doi.org/10.1016/j.compedu.2022.104681

Link DOI | Link Google Scholar

Sun, Q., Patney, A., Wei, L.Y., Shapira, O., Lu, J., Asente, P., Zhu, S., McGuire, M., Luebke, D., & Kaufman, A. (2018). Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Transactions on Graphics, 37(4), 1-13. https://doi.org/10.1145/3197517.3201294

Link DOI | Link Google Scholar

Tanaka, Y., Kanari, K., & Sato, M. (2021). Interaction with virtual objects through eye-tracking. In M. Nakajima, J.G. Kim, W.N. Lie, & Q. Kemao (Eds.), International Workshop on Advanced Imaging Technology (IWAIT) 2021 (p. 1176624). SPIE. https://doi.org/10.1117/12.2590989

Link DOI | Link Google Scholar

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., & Woods, E. (2020). Tslearn, A Machine-learning Toolkit for Time Series Data. J. Mach. Learn. Res., 21, 118, 1-6.

Link Google Scholar

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625-636. https://doi.org/10.3758/BF03196322

Link DOI | Link Google Scholar

Wismer, P., Soares, S.A., Einarson, K.A., & Sommer, M.O.A. (2022). Laboratory performance prediction using virtual reality behaviometrics. PloS One, 17(12), e0279320. https://doi.org/10.1371/journal.pone.0279320

Link DOI | Link Google Scholar

Fundref

Crossmark

Technical information

Recebido: 26-12-2022

Revisado: 25-01-2023

Aceite: 23-02-2023

OnlineFirst: 30-05-2023

Data de publicação: 01-07-2023

Tempo de revisão do artigo: 30 dias | Tempo médio de revisão do número 76: -6 dias

Tempo de aceitação do artigo: 59 dias | Tempo médio de aceitação do número 76: 72 dias

Tempo de edição da pré-impressão: 142 dias | Tempo médio de edição pré-impressão do número 76: 155 dias

Tempo de processamento do artigo: 187 dias | Tempo médio de processamento do número 76: 200 dias

Métricas

Métricas deste artigo

Vistas: 56103

Leituras dos resumos: 54284

Descargas em PDF: 1819

Métricas completas do Comunicar 76

Vistas: 596153

Leituras dos resumos: 580422

Descargas em PDF: 15731

Citado por

Citas em Web of Science

Actualmente não há citações a este documento

Citas em Scopus

Actualmente não há citações a este documento

Citas em Google Scholar

Detection of Stress Stimuli in Learning Contexts of iVR Environments JM Ramírez-Sanz, HM Peña-Alonso… - … on Extended Reality, 2023 - Springer

https://link.springer.com/chapter/10.1007/978-3-031-43404-4_29

Baixar

Métricas alternativas

Como citar

Serrano-Mamolar, A., Miguel-Alonso, I., Checa, D., & Pardo-Aguilar, C. (2023). Towards learner performance evaluation in iVR learning environments using eye-tracking and Machine-learning. [Hacia una metodología de evaluación del rendimiento del alumno en entornos de aprendizaje iVR utilizando eye-tracking y aprendizaje automático]. Comunicar, 76, 9-20. https://doi.org/10.3916/C76-2023-01

Compartilhar

           

Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul United Kingdom

Administração

Redação

Creative Commons

Este site usa cookies para obter dados estatísticos sobre a navegação de seus usuários. Se você continuar navegando, consideramos que você aceita seu uso. +info X