Volume index - Journal index - Article index - Map ---- Back

Comunicar Journal 63: Gender equality, media and education: A necessary global alliance (Vol. 28 - 2020)

Problematic Internet uses and depression in adolescents: A meta-analysis


Raquel Lozano-Blasco

Alejandra Cortés-Pascual


Widespread use of the Internet in 21st century society is not risk-free. This paper studies the comorbidity of some problematic uses of Internet with depression in order to assess their correlation. With that aim, a meta-analysis of 19 samples obtained from 13 different studies (n=33,458) was carried out. The subjects of these studies are adolescents between the ages of 12 and 18 years (µ=15.68) from different cultures and continents (Europe, Euro-Asia, America and Asia). The effect size obtained from the use of a random-effects model (r=0.3, p<0.000) is significant, moderate and positive, thus confirming the relation between pathologic uses of the Internet and depression. Moreover, meta-regression test results showed that 9% of the variance (R2=0.09) is associated with the male gender, while age and culture are not significant variables. The variability rate of the studies is high (I2=87.085%), as a consequence of heterogeneity rather than publication bias, as Egger’s regression test shows (1-tailed p-value=0.25; 2-tailed p-value=0.50, and ?=1.57). Therefore, the need for specific interventions in secondary education dealing with this issue is evident to ensure that it does not extend into adult life.


Meta-analysis, adolescence, Internet, pathological use, depression, comorbidity, correlation, moderating effect

PDF file in Spanish

PDF file in English


American Psychiatric Association (Ed.) (2013). Diagnostic and statistical manual of mental disorders. American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596

Banjanin, N., Banjanin, N., Dimitrijevic, I., & Pantic, I. (2015). Relationship between internet use and depression: Focus on physiological mood oscillations, social networking and online addictive behavior. Computers in Human Behavior, 43, 308-312. https://doi.org/10.1016/j.chb.2014.11.013

Bickhan, D.S., Hswen, Y., & Rich, M. (2015). Media use and depression: Exposure, household rules, and symptoms among young adolescents in the USA. International Journal of Public Health, 60, 147-155. https://doi.org/10.1007/s00038-014-0647-6

Bonetti, L., Campbell, MA., & Gilmore, L. (2010). The relationship of loneliness and social anxiety with children’s and adolescents’ online communication. Cyberpsychology, Behavior, and Social Networking, 13, 279-285. https://doi.org/10.1089/cyber.2009.0215

Botella, J., & Sánchez, J. (2015). Meta-análisis en ciencias sociales y de la salud. Síntesis.

Chang, F.C., Chiu, C.H., Lee, C.M., Chen, P.H., & Miao, N.F. (2014). Predictors of the initiation and persistence of Internet addiction among adolescents in Taiwan. Addictive Behaviors, 39(10), 1434-1440. https://doi.org/10.1016/j.addbeh.2014.05.010

Cheng, C., & Li, A.Y., (2014). Internet addiction prevalence and quality of (real) life: A metaanalysis of 31 nations across seven world regions. Cyberpsychology, Behavior, and Social Networking, 17, 755-760. https://doi.org/10.1089/cyber.2014.0317

Cho, C.M. (2017). Self-rating smart phone addiction scale for adolescents. In M. Israelashvili, & J. Romano (Eds.), The Cambridge Handbook of International Prevention Science (pp. 571-573). Cambridge University Press.

Chou, H.T., & Edge, N. (2012). They are happier and having better lives than I am: The impact of using Facebook on perceptions of others’ lives. Cyberpsychology, Behaviour, and Social Networking, 15(2), 117-121. https://doi.org/10.1089/cyber.2011.0324

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Erlbaum. https://doi.org/10.4324/9780203771587

Colder-Carras, M., Van-Rooij, A. Van-de-Mheen, D., Musci, R., Xue, Q., & Mendelson, T. (2017). Video gaming in a hyperconnected world: A cross-sectional study of heavy gaming, problematic gaming symptoms, and online socializing in adolescents. Computers in Human Behavior 68, 472-479. https://doi.org/10.1016/j.chb.2016.11.060

Der-Simonian R., & Laird N. (1986). Meta-analysis in clinical trials. Medline, 7, 177-188. https://doi.org/10.1016/j.cct.2015.09.002

Egger, M., Smith, G.D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629-634. https://doi.org/10.1136/bmj.315.7109.629

El-Asam, A., Samara, M., & Terry, P. (2019). Problematic internet use and mental health among British children and adolescents. Addictive Behaviors, 90, 428-436. https://doi.org/10.1016/j.addbeh.2018.09.007

Gámez-Guadix, M., Orue, I., Smith, P., & Calvete, E. (2014). Depressive symptoms and problematic Internet use among adolescents: Analysis of the longitudinal relationships from the cognitive behavioral model. Cyberpsychology, Behavior, and Social Networking, 17(11), 714-719. http://doi.org/f6n9kc

Higgins, J.P.T., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration.

Higgins, J.P.T., Thompson, S.G., Deeks, J.J., & Altman, DG. (2003). Measuring inconsistency in meta-analyses. BJM, 327, 557-560. https://doi.org/10.1136/bmj.327.7414.557

Israelashvili, M., & Romano, J. (2016). The Cambridge handbook of international prevention science. Cambridge University Press. https://doi.org/10.1017/9781316104453.024

Jin, Z.C., Wu, C., Zhou, X.H., & He, J. (2014). A modified regression method to test publication bis in meta-analysis with binary outcomes. BMJ, 315 (7109), 629-634. https://doi.org/10.1186/1471-2288-14-132

Jun, S. (2016). The reciprocal longitudinal relationships between mobile phone addiction and depressive symptoms among Korean adolescents. Computers in Human Behavior, 58, 179-186. https://doi.org/10.1016/j.chb.2015.12.061

Kaess, M., Durkee, T., Brunner, R., Carli, V., Parzer, P., Wasserman, C., Sarchiapone, M., Hoven, C., Apter, A., Balazs, J., Balint, M., Bobes, J., Cohen, R., Cosman, D., Cotter, P., Fischer, G., Floderus, B., Iosue, M., Haring, C., … Ziberna, J. (2014). Pathological Internet use among European adolescents: Psychopathology and self destructive behaviors. European Child & Adolescent Psychiatry, 23(11), 1093-1102. https://doi.org/10.1016/s0924-9338(13)76661-6

Kim, J.H., Seo, M., & David, P. (2015). Alleviating depression only to become problematic mobile phone users: Can face-to-face communication be the antidote? Computers in Human Behavior, 51, 440-447. https://doi.org/10.1016/j.chb.2015.05.030

King, A.L.S., Valença, A.M., Silva, A.C.O., Baczynski, T., Carvalho, M.R., & Nardi, A.E. (2013). Nomophobia: Dependency on virtual environments or social phobia? Computers in Human Behavior, 29(1), 140-144. https://doi.org/10.1016/j.chb.2012.07.025

Király, O., Nagygyörgy, K., Koronczai, B., Gri?ths, M.D., & Demetrovics, Z. (2015). Assessment of problematic Internet use and online video gaming. In E. Aboujaoude, & V. Starcevic (Eds.), Mental health in the digital age: Grave dangers, great promise (pp. 46–68). Oxford University Press. https://doi.org/10.1093/med/9780199380183.003.0003

Kircaburun, K., Griffiths, M.D., & Billieux. J. (2019). Psychosocial factors mediating the relationship between childhood emotional trauma and internet gaming disorder: A pilot study. European Journal of Psychotraumatology, 10(1). https://doi.org/10.1080/20008198.2018.1565031

Lin, M.P., Wu, J.Y., You, J., Hu, W.H., & Yen, C.F. (2018). Prevalence of internet addiction and its risk and protective factors in a representative sample of senior high school students in Taiwan. Journal of Adolescence, 62, 38-46. https://doi.org/10.1016/j.adolescence.2017.11.004

Lu, L., Xu, D.D., Liu, H.Z., Zhang, L., Ng, C.H., Ungvari, G.S., An, F.R., Xiang, Y.T. (2018). Internet addiction in Tibetan and Han Chinese middle school students: Prevalence, demographics and quality of life. Psychiatry Research, 268, 131-136. https://doi.org/10.1016/j.psychres.2018.07.005

Martin-Andrés, A., & Luna-del-Castillo, J.D. (2004). Bioestadística para las Ciencias de la Salud. Norma-Capitel.

McLaughlin, K.A., & King, K. (2015). Developmental trajectories of anxiety and depression in early adolescence. Journal of Abnormal Child Psychology, 43(2), 311-323. https://doi.org/10.1007/s10802-014-9898-1

Mehdizadeh, S. (2010). Self-presentation 2.0: Narcissism and self-esteem on Facebook. Cyberpsychology, Behaviour, and Social Networking, 13(4), 357-364. https://doi.org/10.1089/cyber.2009.0257

Müller, K.W., Dreier, M., Beutel, M.E., Duven, E., Giralt, S., & Wölfling, K. (2016). A hidden type of internet addiction? Intense and addictive use of social networking sites in adolescents. Computers in Human Behavior, 55, 172-177. https://doi.org/10.1016/j.chb.2015.09.007

Oberst, U., Renau, V., Chamarro, A., & Carbonell, X. (2016). Gender stereotypes in Facebook profiles: Are women more female online? Computers in Human Behavior, 60, 559-564. https://doi.org/10.1016/j.chb.2016.02.085

Ofcom (Ed.) (2017). Children and parents: Media use and attitudes report. https://bit.ly/2Yq5V5b

Pew Research Center (Ed.) (2015). Teens, social media, and technology overview 2015. https://pewrsr.ch/2QB8Xlp

Sami, H., Danielle, L., Lihi, D., & Elena, S. (2018). The effect of sleep disturbances and internet addiction on suicidal ideation among adolescents in the presence of depressive symptoms. Psychiatry Research, 267, 327-332. https://doi.org/10.1016/j.psychres.2018.03.067

Sotelo-Alonso, I., Rojas-Soto, J.E., Sánchez-Arenas, C., & Irigoyen-Coria A. (2012). La depresión en el adulto mayor: Una perspectiva clínica y epidemiológica desde el primer nivel de atención. Archivos en Medicina Familiar, 14(1), 5-13. http://bit.ly/2r60tId

Sterne, J.A., Sutton, A.J., Loannidis, J.P.A., Terrin, N., Jones, D.R., Lau, J., Carpenter, R., Rücker, G., Harbord, R.M., Schmid, C.H., Tetzlaff, J., Deeks, J.J., Peters, J., Macaskill, P., Schwarzer, G., Duval, S., Altman, D.G., Moher, D., Higgins, J.P.T. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ, 343. https://doi.org/10.1136/bmj.d4002

Tsitsika, AK., Tzavela, E.C., Janikian, M., Olafsson, K., Iordache, A., Schoenmakers, T.M., Tzavara, C., & Richardson, C. (2014). Online social networking in adolescence: Patterns of use in six European Countries and links with psychosocial functioning. Journal of Adolescent Health, 55(1), 141-147. https://doi.org/10.1016/j.jadohealth.2013.11.010

Underwood, M.K., & Ehrenreich, S.E. (2017). The power and the pain of adolescents' digital communication: Cyber victimization and the perils of lurking. American Psychologist, 2, 144-158. https://doi.org/10.1037/a0040429

Walburg, V., Mialhes, A., & Moncla, D. (2016). Does school-related burnout influence problematic Facebook use? Children and Youth Services Review, 61, 327-331. https://doi.org/10.1016/j.childyouth.2016.01.009

Wartberg, L., Brunner, R., Kriston, L., Durkee, T., Parzer, P., Fischer-Waldschmidt, G., Resch, F., Sarchiapone, M., Wasserman, C., Hoven, C.W., Carli, V., Wasserman, D., Thomasius, R., & Kaess, M. (2016). Psychopathological factors associated with problematic alcohol and problematic Internet use in a sample of adolescents in Germany. Psychiatry Research, 240, 272-277. https://doi.org/10.1016/j.psychres.2016.04.057

Woods, H.C., & Scott, H. (2016). #Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem. Journal of Adolescence, 51, 41-49. https://doi.org/10.1016/j.adolescence.2016.05.008

Wu, C.Y., Lee, M.B., Liao, S.C., & Chang, L.R. (2015). Risk factors of internet addiction among internet users: An online questionnaire survey. PLoS One, 10. https://doi.org/10.1371/journal.pone.0137506

Young, K.S. (1998). Caught in the net. Wiley.

Zhang, H., Jiang, W., Lin, Z., Du, Y., & Vance, A. (2013). Comparison of psychological symptoms and serum levels of neurotransmitters in Shanghai adolescents with and without internet addiction disorder: A case control study. Plos One, 8(5), 1-4. https://doi.org/10.1371/journal.pone.0063089