Volume index - Journal index - Article index - Map ---- Back
Neuroeducation, electroencephalography, neurophysiological measurements in education, primary education, elementary school, educational contex, case study
Akalin-Acar, Z., & Makeig, S. (2013). Effects of forward model errors on EEG source localization. Brain topography, 26(3), 378-396. https://doi.org/10.1007/s10548-012-0274-6
Antonenko, P., Paas, F., Grabner, R., & Van-Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22(4), 425-438. https://doi.org/10.1007/s10648-010-9130-y
Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (1999). Oscillatory brain theory: A new trend in neuroscience. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society, 18(3), 56-66. https://doi.org/10.1109/51.765190
Bevilacqua, D., Davidesco, I., Wan, L., Chaloner, K., Rowland, J., Ding, M., Poeppel, D., & Dikker, S. (2019). Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: evidence from a real-world classroom electroencephalography study. Journal of Cognitive Neuroscience, 31(3), 401-11. https://doi.org/10.1162/jocn_a_01274
Browarska, N., Kawala-Sterniuk, A., Zygarlicki, J., Podpora, M., Pelc, M., Martinek, R., & Gorzelanczyk, E.J. (2021). Comparison of smoothing filters' influence on quality of data recorded with the emotiv EPOC Flex brain-computer interface headset during audio stimulation. Brain sciences, 11(1), 98. https://doi.org/10.3390/brainsci11010098
Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42. https://doi.org/10.3102/0013189X018001032
Coan, J.A., & Allen, J.J. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1-2), 7-50. https://doi.org/10.1016/j.biopsycho.2004.03.002
Craik, A., He, Y., & Contreras-Vidal, J.J. (2019). Deep learning for electroencephalogram (EEG) classification tasks: A review. Journal of Neural Engineering, 16(3), 031001. https://doi.org/10.1088/1741-2552/ab0ab5
Dikker, S., Haegens, S., Bevilacqua, D., Davidesco, I., Wan, L., Kaggen, L., McClintock, J., Chaloner, K., Ding, M., West, T., & Poeppel, D. (2020). Morning brain: Real-world neural evidence that high school class times matter. Social Cognitive and Affective Neuroscience, 15(11), 1193-1202. https://doi.org/10.1093/scan/nsaa142
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Michalareas, G., Van Bavel, J.J., Ding, M., & Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375-80. https://doi.org/10.1016/j.cub.2017.04.002
Glaser, B., & Strauss, A. (2006). The discovery of grounded theory. Aldine Transaction.
Grammer, J.K., Xu, K., & Lenartowicz, A. (2021). Effects of context on the neural correlates of attention in a college classroom. NPJ science of learning, 6(1), 15. https://doi.org/10.1038/s41539-021-00094-8
Hajare, R., & Kadam, S. (2021). Comparative study analysis of practical EEG sensors in medical diagnoses. Global Transitions Proceedings, 2(2), 467-475. https://doi.org/10.1016/j.gltp.2021.08.009
Howard-Jones, P.A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., Laurillard, D., & Thomas, M.S.C. (2016). The principles and practices of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 620-627. https://doi.org/10.1037/rev0000036
Janssen, T.W.P., Grammer, J.K., Bleichner, M.G., Bulgarelli, C., Davidesco, I., Dikker, S., Jasi?ska, K.K., Siugzdaite, R., Vassena, E., Vatakis, A., Zion-Golumbic, E., & van Atteveldt, N. (2021). Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience. Mind, Brain and Education, 15(4), 354-370. https://doi.org/10.1111/mbe.12302
Katzir, T., & Paré-Blagoev, J. (2006). Applying cognitive neuroscience research to education: The case of literacy. Educational Psychologist, 41(1), 53-74. https://doi.org/10.1207/s15326985ep4101_6
Khedher, A.B., Jraidi, I., & Frasson, C. (2019). Tracking students’ mental engagement using EEG signals during an interaction with a virtual learning environment. Journal of Intelligent Learning Systems and Applications, 11(1), 1-14. https://doi.org/10.4236/jilsa.2019.111001
Krigolson, O.E., Williams, C.C., Norton, A., Hassall, C.D., & Colino, F.L. (2017). Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Frontiers in Neuroscience, 11, 109. https://doi.org/10.3389/fnins.2017.00109
Lau-Zhu, A., Lau, M.P.H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635
Liu, Y., & Zhang, Y. (2021). Developing sustaining authentic partnership between MBE researchers and local schools. Mind, Brain, and Education, 15(2), 153-162. https://doi.org/10.1111/mbe.12280
Mason L. (2009). Bridging neuroscience and education: A two-way path is possible. Cortex, 45(4), 548-549. https://doi.org/10.1016/j.cortex.2008.06.003
Matusz, P.J., Dikker, S., Huth, A.G., & Perrodin, C. (2019). Are we ready for real-world neuroscience? Journal of Cognitive Neuroscience, 31(3), 327-338. https://doi.org/10.1162/jocn_e_01276
McMahan, T., Parberry, I., & Parsons, T.D. (2015). Evaluating player task engagement and arousal using electroencephalography. Procedia Manufacturing, 3, 2303-2310. https://doi.org/10.1016/j.promfg.2015.07.376
Pope, A.T., Bogart, E.H., & Bartolome, D.S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40(1-2), 187-195. https://doi.org/10.1016/0301-0511(95)05116-3
Rose, N., & Abi-Rached, J. (2014). Governing through the brain: Neuropolitics, neuroscience and subjectivity. The Cambridge Journal of Anthropology, 32(1), 3-23. https://doi.org/10.3167/ca.2014.320102
Shad, E.H.T., Molinas, M., & Ytterdal, T. (2020). Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sensors Journal, 20(24), 14565-14577. https://doi.org/10.1109/JSEN.2020.3012394
Shamay-Tsoory, S.G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841-859. https://doi.org/10.1177/1745691619856350
Shkedi, A. (2004). Second?order theoretical analysis: A method for constructing theoretical explanation. International Journal of Qualitative Studies in Education, 17(5), 627-646. https://doi.org/10.1080/0951839042000253630
Stake, R.E. (2010). Qualitative research: Studying how things work. Guilford Publications. https://bit.ly/3J0mmNf
Vekety, B., Logemann, A., & Takacs, Z.K. (2022). Mindfulness practice with a brain-sensing device improved cognitive functioning of elementary school children: An exploratory pilot study. Brain Sciences, 12(1), 103. https://doi.org/10.3390/brainsci12010103
Williams, N.S., McArthur, G.M., & Badcock, N.A. (2020a). 10 years of EPOC: A scoping review of Emotiv’s portable EEG device. BioRxiv. https://doi.org/10.1101/2020.07.14.202085
Williams, N.S., McArthur, G.M., de-Wit, B., Ibrahim, G., & Badcock, N.A. (2020b). A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ, 8, e9713. https://doi.org/10.7717/peerj.9713
Williamson, B. (2018). Brain data: Scanning, scraping and sculpting the plastic learning brain through neurotechnology. Postdigital Science and Education, 1, 65-86. https://doi.org/10.1007/s42438-018-0008-5
Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational research. Computers in Human Behavior, 81, 340-349. https://doi.org/10.1111/mbe.12314
Xu, K., Torgrimson, S.J., Torres, R., Lenartowicz, A., & Grammer, J.K. (2022). EEG data quality in real?world settings: Examining neural correlates of attention in school?aged children. Mind, Brain, and Education, 16(3), 221-227. https://doi.org.ponton.uva.es/10.1111/mbe.12314
Zerafa, R., Camilleri, T., Falzon, O., & Camilleri, K.P. (2018). A comparison of a broad range of EEG acquisition devices– is there any difference for SSVEP BCIs? Brain-Computer Interfaces, 5(4), 121-131 https://doi.org/10.1080/2326263X.2018.1550710