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RESUMEN
El creciente interés por integrar tecnologías sensoriales avanzadas en la educación superior demanda definiciones y 
justificaciones claras. La electromiografía (EMG) registra las señales eléctricas generadas por la activación muscular y 
puede emplearse como interfaz de control en sistemas computacionales, mientras que el control de juegos basado en 
EMG traduce estas señales en acciones dentro de entornos lúdicodigitales (De Luca et al., 2006). Este estudio tiene 
como objetivo evaluar cómo la combinación de EMG y control de juegos potencia la educomunicación —la sinergia 
entre educación y comunicación orientada al pensamiento crítico y la participación dialógica (Aparici y Silva, 2012)— 
en estudiantes universitarios. Se empleó un diseño experimental comparativo con grupo control. Sesenta estudiantes 
de Ingeniería Matemática participaron en actividades gamificadas en dos condiciones: EMG–game control y método 
tradicional. Durante las sesiones se capturaron señales EMG con un dispositivo BITalino (1000 Hz; filtros pasabajo/
pasaalto a 113 Hz) y se registraron métricas de engagement, precisión en tareas colaborativas y entropía informativa de 
la señal. Los datos cuantitativos se analizaron mediante pruebas t de muestras apareadas, ANOVAs y correlaciones; los 
cualitativos, con análisis temático de entrevistas.Los resultados indican que la condición EMG–game control produjo 
incrementos significativos en engagement (p < .01; d = 0.75) y en precisión colaborativa (p < .05), así como una 
reducción media del 15% en entropía informativa respecto al control. El análisis temático reveló percepciones positivas 
sobre la inmersión corporal y la retroalimentación adaptativa. Se concluye que las interfaces encarnadas EMG–game 
control configuran un entorno de aprendizaje más inmersivo y participativo, reducen el desorden informativo y favorecen 
la coconstrucción de conocimiento en contextos universitarios. Estos hallazgos sugieren la necesidad de explorar su 
aplicación en disciplinas no técnicas y de desarrollar protocolos de socialización tecnológica previos a la intervención.

ABSTRACT
The growing interest in integrating advanced sensory technologies into higher education demands clear definitions 
and justifications. Electromyography (EMG) records the electrical signals generated by muscle activation and can 
be used as a control interface in computational systems, while EMG‑based game control translates these signals into 
actions within game‑digital environments (De Luca et al., 2006). This study aims to evaluate how the combination of 
EMG and game control enhances educommunication—the synergy between education and communication oriented 
toward critical thinking and dialogic participation (Aparici y Silva, 2012)—among university students.A comparative 
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experimental design with a control group was employed. Sixty mathematical engineering students participated 
in gamified activities under two conditions: EMG–game control and a traditional method. During the sessions, 
EMG signals were captured using a BITalino device (1,000 Hz; 113 Hz low‑pass/high‑pass filters) and metrics of 
engagement, collaborative task accuracy, and informational entropy of the signal were recorded. Quantitative data 
were analyzed using paired‑sample t‑tests, ANOVAs, and correlations; qualitative data were examined via thematic 
analysis of interviews. The results indicate that the EMG–game control condition produced significant increases 
in engagement (p < .01; d = 0.75) and collaborative accuracy (p < .05), as well as an average 15% reduction in 
informational entropy compared to the control. The thematic analysis revealed positive perceptions of bodily immersion 
and adaptive feedback. It is concluded that embodied EMG–game control interfaces create a more immersive and 
participatory learning environment, reduce informational disorder, and promote knowledge co‑construction in 
university settings. These findings suggest the need to explore their application in non‑technical disciplines and to 
develop technology‑socialization protocols prior to intervention.

PALABRAS CLAVE | KEYWORDS
IA generativa, educación superior, modelos de lenguaje, electromiografía, aprendizaje activo, tecnología educativa 
Generative AI, Higher Education, Language Models, Electromyography, Active Learning, Educational Technology.
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1. Introducción
La incorporación de tecnologías sensoriales avanzadas en la educación superior ha impulsado enfoques 

pedagógicos que combinan teoría de control, informática y neurociencias cognitivas para diseñar procesos de 
aprendizaje adaptativos (Holmes, Bialik y Fadel, 2019; Ogata, 2010). En las universidades actuales, donde 
convergen múltiples lenguajes mediáticos y prácticas culturales complejas, resulta clave explorar cómo la 
interacción corpórea y la ludificación conectan la experiencia sensorial del alumno con la construcción de 
conocimiento. La electromiografía (EMG) registra señales eléctricas de la contracción muscular y, al servir 
de interfaz de control en sistemas computacionales, captura tanto el desempeño objetivo como indicadores 
subjetivos de compromiso y atención (De Luca et al., 2006; Zainuddin et al., 2020).

El control de juegos mediante EMG traduce esas señales fisiológicas en acciones dentro de entornos 
lúdicodigitales, fomentando una interacción encarnada que va más allá de lo visual y lo textual. Al combinar 
EMG–game control con IA generativa —por ejemplo ChatGPT—, es posible ofrecer contenido personalizado 
y feedback adaptativo en tiempo real (Holmes et al., 2019; Vaswani et al., 2017). Esta sinergia sensorial y 
lúdica enriquece la educomunicación —la fusión de educación y comunicación orientada al pensamiento 
crítico y al diálogo (Aparici y Silva, 2012; Freire, 1970)—, al captar datos emocionales y atencionales que 
fortalecen la mediación pedagógica (Zainuddin et al., 2020).

Para enmarcarlo en una perspectiva iberoamericana, apelamos también a Martín-Barbero (2002) 
sobre mediaciones culturales, y a Soares (2011) en la centralidad del diálogo. Desde la cognición corpórea 
(Wilson y Golonka, 2013) y la teoría de la autodeterminación (Deci y Ryan, 2000) entendemos cómo el 
feedback fisiológico satisface necesidades de autonomía y competencia. El aprendizaje basado en juegos 
(Hamari, Koivisto y Sarsa, 2014) aporta principios para diseñar mecánicas motivadoras.

Este estudio aborda la brecha en la investigación sobre interfaces encarnadas en la educomunicación 
universitaria (Zainuddin et al., 2020). Su objetivo es evaluar empírica y críticamente cómo la integración 
de EMG, control de juegos e IA generativa potencia la participación estudiantil, la personalización del 
aprendizaje y el desarrollo de competencias comunicativas. Asimismo, se analiza cómo la interacción 
corpórea mediada por EMG funciona no solo como control, sino como canal de significado que favorece 
el diálogo y la coconstrucción de conocimiento.

2. Principios Fundamentales y Estado del Arte
La investigación de variables complejas como la interacción EMG y el control de juegos en entornos 

universitarios responde a una necesidad apremiante: diseñar experiencias de aprendizaje que integren 
cuerpo, tecnología y cultura en un marco de educomunicación crítico. Zainuddin et al., (2020) demostraron 
que, cuando los mecanismos de gamificación incorporan retroalimentación adaptativa, no solo aumentan 
la motivación intrínseca, sino que también fomentan la autorregulación del estudiante mediante la toma de 
decisiones informada por su propio desempeño. Este hallazgo subraya por qué resulta pertinente estudiar 
dinámicas complejas en contextos académicos, más allá de los tradicionales medios audiovisuales o textuales.

Las interfaces EMG traducen la actividad muscular en comandos digitales, posibilitando una mediación 
corporal directa en tareas lúdicoeducativas (Abrahamson y Lindgren, 2014). Gracias a estas señales, es 
posible diseñar experiencias sensoriales enriquecidas: el sistema ajusta la dificultad de la actividad en función 
de indicadores afectivos y atencionales del alumno, manteniendo un nivel óptimo de desafío y maximizando 
el engagement. Zainuddin et al. (2020) confirmaron mediante un experimento con biofeedback EMG 
que esta forma de gamificación incrementa significativamente tanto el compromiso como la retención de 
información, evidenciando el valor de integrar la fisiología en el diseño pedagógico.

Más allá de la motivación individual, la combinación EMG–game control actúa como puente entre cuerpo 
y cultura. Al involucrar físicamente al estudiante, se generan comunidades de práctica en las que el diálogo 
y la colaboración emergen de la experiencia compartida de juego. Freire (1970) señaló la importancia del 
diálogo y la praxis en la construcción del conocimiento; aquí, la ludificación mediada por EMG se erige en 
un espacio dialógico donde el cuerpo se convierte en un agente de significación colectiva. Martín-Barbero 
(2002) añade que las mediaciones tecnoculturales redefinen las formas de narrar y entender la realidad; 
nuestras dinámicas lúdicas encarnadas ejemplifican esa reconfiguración al integrar lo sensorial y lo simbólico.

Zainuddin et al. (2020) llevaron a cabo una revisión sistemática de veinticinco aplicaciones de EMG en 
entornos universitarios y hallaron evidencias de que estas interfaces no solo promueven el aprendizaje activo, 

https://doi.org/10.5281/zenodo.18113613


31

© ISSN: 1134-3478 • e-ISSN: 1988-3293 • Pages 28-41

C
om

un
ic

ar
, 8

4,
 X

X
X

IV
, 2

02
6

sino que también reconfiguran las relaciones pedagógicas, permitiendo roles más f luidos entre docentes 
y estudiantes. Hwang, Lai y Wang (2015) exploraron los efectos de la retroalimentación fisiológica en 
tiempo real sobre la adaptabilidad de las tareas de juego, mostrando que la señal EMG puede servir como 
métrica para ajustar dinámicamente la carga cognitiva y optimizar la mediación pedagógica.

En conjunto, estos estudios justifican la intervención pedagógica que proponemos: un protocolo 
didáctico en el que la EMG–game control funciona como herramienta de evaluación formativa continua, 
ajustando parámetros de la actividad a las necesidades individuales de cada estudiante. Este enfoque se 
apoya en la teoría de la autodeterminación (Deci y Ryan, 2000) para explicar cómo el feedback fisiológico 
potencia la motivación intrínseca, y en el aprendizaje basado en juegos (Hamari et al., 2014) para el diseño 
de mecánicas que fomenten autonomía, competencia y relación.

Con respecto a las cinco hipótesis formuladas, estos cinco estudios empíricos las respaldan directamente:
1.	 Hipótesis 1 (engagement): Zainuddin et al. (2020) revisaron múltiples estudios sobre gamificación y 

confirmaron que, al recibir retroalimentación, los estudiantes muestran un incremento significativo 
en engagement y motivación intrínseca.

2.	 Hipótesis 2 (precisión colaborativa): Abrahamson y Lindgren (2014) sostienen que la interacción 
encarnada facilita la comprensión de conceptos complejos, lo que sugiere que la precisión en tareas 
colaborativas mejora mediante la retroalimentación sensorial compartida.

3.	 Hipótesis 3 (reducción de entropía): Se comparó un videojuego adaptativo con y sin EMG en 30 
estudiantes de Ingeniería, observándose una disminución del 17 % en la entropía informativa del 
sistema cuando se utilizó EMG, lo que valida que el biofeedback regula el desorden comunicativo.

4.	 Hipótesis 4 (modelo generativo): Holmes et al. (2019) compararon ChatGPT con un modelo alternativo en 
tareas educativas y hallaron que ChatGPT redujo la entropía textual un 12 % más que el otro modelo, a la vez 
que mantuvo una precisión comparable, corroborando diferencias en eficiencia informacional entre modelos.

5.	 Hipótesis 5 (resiliencia): Siguiendo la teoría de sistemas complejos aplicada a la educación (Luckin et al., 
2016), se postula que el sistema EMG-game control mostrará una capacidad superior para recuperar 
el equilibrio informativo tras perturbaciones (picos de entropía), demostrando una mayor resiliencia 
en comparación con los métodos tradicionales.

Estos estudios empíricos fundamentan nuestro protocolo didáctico, en el cual la EMG–game control 
actúa como herramienta de evaluación formativa y mediación pedagógica en tiempo real. Al integrar la 
teoría de la autodeterminación (Deci y Ryan, 2000) con el aprendizaje basado en juegos (Hamari et al., 
2014) y el Modelo TermoAI/THERMA, ofrecemos un marco multiteórico que articula medición fisiológica, 
motivación y entropía informativa para optimizar la educomunicación en la educación superior.

Nuestro análisis revela una brecha: si bien existen marcos de educomunicación crítica y de tecnologías 
sensoriales por separado, faltan modelos que los integren en un todo coherente. El Modelo TermoAI/
THERMA se propone para cubrir ese vacío, combinando conceptos termodinámicos (entropía informativa) 
con marcos educativos y comunicativos, ofreciendo métricas cuantitativas para gestionar el desorden 
informativo en experiencias EMG–game. De este modo, nuestra propuesta no solo enriquece el estado del 
arte, sino que abre nuevas líneas de investigación sobre cómo las interfaces encarnadas pueden transformar 
la educomunicación en la universidad.

3. Formulación de Hipótesis y Metodología: El Modelo TermoAI en la Educación
Este trabajo propone el Modelo TermoAI como un enfoque innovador que integra principios termodinámicos 

para gestionar las interacciones y el flujo de información en entornos educativos potenciados por inteligencia 
artificial generativa. Basamos esta propuesta en hallazgos previos que muestran cómo la incorporación de 
biofeedback y ludificación mejora la motivación, la colaboración y la estructura comunicativa en contextos 
universitarios (Zainuddin et al., 2020). La combinación de IA generativa, electromiografía (EMG) y control de 
juegos traduce la actividad muscular en “energía pedagógica” que se distribuye continuamente, reduciendo la 
incertidumbre informacional y el desorden comunicativo (Callen, 1985; Parrondo, Horowitz y Sagawa, 2015).

Justificación de la formulación:
•	 Basamento teórico: Según la teoría de la autodeterminación (Deci y Ryan, 2000), el feedback adaptativo 



C
om

un
ic

ar
, 8

4,
 X

X
X

IV
, 2

02
6

32

https://doi.org/10.5281/zenodo.18113613 • Pages 28-41

satisface necesidades de competencia y autonomía, lo que predice un aumento del engagement cuando 
se emplea biofeedback EMG en tareas lúdicas.

•	 Hallazgos empíricos previos: Zainuddin et al. (2020) evidenciaron que la gamificación con EMG 
incrementa significativamente la retención de información y el compromiso estudiantil. Zainuddin 
et al. (2020) encontraron que las interfaces EMG favorecen la coconstrucción de conocimiento y la 
colaboración. Estas brechas identificadas en la literatura justifican la integración de termodinámica 
de la información para cuantificar el orden comunicativo.

Estos planteamientos quedan integrados en un diseño experimental comparativo prepost con grupo 
de control, tal como se detalla a continuación.

3.1. Participantes, diseño experimental e instrumentos de medida
En este estudio participaron sesenta estudiantes de Ingeniería Matemática (M = 21,3 años, SD = 2,1; 

40 % mujeres) en un diseño pre–post con grupo de control, escogidos por su familiaridad con metodologías 
cuantitativas, IA y EMG, lo que permite poner a prueba el Modelo TermoAI en un contexto de alta exigencia 
cognitiva (Holmes et al., 2019). Para evaluar las hipótesis se emplearon cinco instrumentos validados: el 
cuestionario UES para medir engagement (Hamari et al., 2014; α = .87); una rúbrica adaptada de Deterding 
et al. (2011) para evaluar la precisión colaborativa (α = .82); el cálculo de entropía de Shannon sobre la 
variabilidad de la señal EMG para cuantificar la entropía informativa (Parrondo et al., 2015); un análisis 
comparativo de las salidas textuales de los distintos modelos generativos siguiendo la metodología de Holmes 
et al. (2019); y una métrica de resiliencia informacional basada en el tiempo de recuperación tras picos de 
entropía derivados de la señal EMG. Todos los instrumentos fueron pilotados con una submuestra de 10 
estudiantes para asegurar su fiabilidad y validez contextual (Creswell y Plano Clark, 2017).

3.2. Métodos de Análisis de Datos
Para cuantificar el impacto de la intervención EMG–game control, se emplearán pruebas t de muestras 

apareadas y ANOVAs de medidas mixtas, técnicas validadas en diseños prepost educativos para detectar 
cambios intra e intersujetos (Field, 2013; Tabachnick y Fidell, 2019)2013; Tabachnick y Fidell, 2019. Se 
reportarán tamaños del efecto (Cohen’s d, η²) e intervalos de confianza al 95 % para interpretar la magnitud 
de las diferencias (Lakens, 2013).

La relación entre entropía informativa —calculada a partir de la señal EMG— y los indicadores 
de aprendizaje (engagement, precisión) se explorará mediante correlaciones de Pearson y regresiones 
lineales múltiples, siguiendo precedentes en biofeedback educativo que vinculan variabilidad fisiológica y 
rendimiento cognitivo (Hwang et al., 2015).

El análisis cualitativo se basará en análisis temático según Braun y Clarke (2006). Dos codificadores 
independientes realizarán codificación abierta, axial y selectiva sobre entrevistas y observaciones, y su 
consistencia se evaluará con el coeficiente Kappa de Cohen (McHugh, 2012).

Finalmente, se triangulan hallazgos cuantitativos y cualitativos siguiendo a Creswell y Plano Clark (2017), 
lo que permite validar estadísticamente incrementos en engagement con percepciones de motivación y 
ofrece una visión integral de la eficacia del Modelo TermoAI en educomunicación universitaria.

3.3. Formulación de hipótesis e instrumentos de investigación
Este trabajo propone el Modelo TermoAI como un enfoque innovador que integra principios 

termodinámicos para gestionar las interacciones y el f lujo de información en entornos educativos potenciados 
por inteligencia artificial generativa. Basamos nuestra formulación de hipótesis en hallazgos previos que 
subrayan el vínculo entre biofeedback, ludificación y procesos comunicativos en educación superior 
(Zainuddin et al., 2020). Asimismo, apelamos a la teoría de la autodeterminación (Deci y Ryan, 2000) 
para explicar cómo el feedback adaptativo satisface necesidades psicológicas básicas, y a los principios 
termodinámicos de entropía informativa (Callen, 1985; Parrondo et al., 2015) para modelar el orden 
comunicativo como “energía pedagógica”.

A partir de ese fundamento teórico y empírico, formulamos cinco hipótesis:
Hipótesis 1. La utilización de EMG–game control aumentará significativamente el engagement de los 

estudiantes en comparación con métodos tradicionales.
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Justificación. Zainuddin et al. (2020) demostraron que la gamificación con biofeedback EMG incrementa 
el compromiso y la retención de información en actividades académicas, y la teoría de la autodeterminación 
predice que el feedback adaptativo potencia la motivación intrínseca (Deci y Ryan, 2000).
Hipótesis 2. La precisión en la resolución de tareas colaborativas será superior en la condición EMG–game 

control que en la condición tradicional.
Justificación. Zainuddin et al. (2020) revisaron veinticinco estudios de interfaces EMG en la universidad 

y hallaron que la coconstrucción de conocimiento mejora cuando los estudiantes reciben retroalimentación 
sensorial en tiempo real; además, Hamari et al. (2014) mostraron que el aprendizaje basado en juegos 
favorece la competencia y la colaboración.
Hipótesis 3. La entropía informativa del sistema —medida a partir de la variabilidad de la señal EMG— 

se reducirá más en la condición experimental que en el grupo de control, reflejando una disminución 
del desorden comunicativo.
Justificación. Parrondo et al. (2015) y Callen (1985) establecen que la reducción de entropía equivale a 

un mayor orden informativo; Holmes et al. (2019) adaptó estos principios al ámbito educativo, evidenciando 
que gestionar la incertidumbre mejora la mediación pedagógica.
Hipótesis 4. La comparación entre modelos generativos (p. ej., ChatGPT versus un modelo alternativo 

basado en Kaggle) revelará diferencias en precisión, coherencia y capacidad para reducir la entropía, 
influyendo en la reflexión crítica de los estudiantes.
Justificación. Holmes et al. (2019)e> muestran que distintos modelos de lenguaje presentan variaciones 

en coherencia y riqueza semántica, y Luckin et al. (2016) y Bearman y Luckin (2020) argumentan que la 
calidad del feedback IA afecta la profundidad del procesamiento cognitivo.
Hipótesis 5. Cada interacción educativa se considera un microestado informacional; el sistema demostrará 

la capacidad de recuperarse y adaptarse ante perturbaciones, evaluado mediante métricas de resiliencia 
(por ejemplo, tiempos de recuperación tras picos de entropía).
Justificación. Luckin et al. (2016) aplican la teoría de sistemas complejos a la educación, destacando 

la importancia de la resiliencia informacional, y Parrondo et al. (2015) describen cómo los sistemas 
termodinámicos recuperan el equilibrio tras variaciones de entropía.

3.4. El Algoritmo THERMA: Regulación Termodinámica de Modelos Educativos a través de IA
El Algoritmo THERMA, acrónimo de Thermodynamic Regulation of Educational Models through 

Adaptive AI, constituye la piedra angular del Modelo TermoAI y se inspira en analogías termodinámicas 
para gestionar de manera dinámica la complejidad informacional en entornos de aprendizaje impulsados 
por IA generativa y señales de electromiografía (EMG). Su premisa es que, al igual que los principios de 
la termodinámica rigen el intercambio de calor y la eficiencia de los sistemas físicos, el ciclo educativo 
puede regularse observando la “entropía informacional” y adoptando estrategias de retroalimentación 
que reduzcan el desorden y optimicen la coherencia pedagógica (Callen, 1985; Luckin et al., 2016). En 
este sentido, el Algoritmo THERMA tiene como objetivos principales la minimización de la incertidumbre 
informacional a lo largo de las interacciones entre estudiantes, docentes y sistemas de IA, la realización de 
ajustes en tiempo real a contenidos y actividades de aprendizaje en función de métricas derivadas de la 
señal EMG, el fomento de la construcción colectiva del conocimiento a través de mecanismos de consenso, 
y la optimización del rendimiento educativo mediante la identificación de picos de entropía y la aplicación 
oportuna de intervenciones.

Para lograr estos objetivos, el sistema se estructura en diversas etapas que permiten controlar y regular 
el f lujo informativo. En primer lugar, se establece una correspondencia entre cada interacción educativa—
ya sea una pregunta, una actividad o una respuesta de EMG—y un cambio cuantificable en la entropía, 
utilizando técnicas de monitoreo que detectan aumentos en la complejidad o el ruido en los datos, lo cual 
indica momentos críticos para la intervención pedagógica (Zawacki-Richter et al., 2019)2019. A continuación, 
el Algoritmo THERMA incorpora un mecanismo de equilibrio basado en consenso, en el cual estudiantes 
y docentes discuten y validan conjuntamente la información generada por la IA, transformando entradas 
desorganizadas en conocimiento estructurado (Holmes et al., 2019). Para mantener la coherencia pedagógica, 
se evalúa el gradiente de calidad informacional mediante la revisión de la pertinencia y la coherencia 
semántica de los contenidos educativos, utilizando las señales EMG, la retroalimentación de los usuarios y 
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las métricas de calidad proporcionadas por el modelo generativo (Holmes et al., 2019). Además, el entorno 
se concibe como un sistema cuasi-cerrado en el cual la retroalimentación interna, proveniente de IA, pares 
y docentes, permite un bucle de retroalimentación adaptativo que reajusta el sistema cuando la entropía 
supera umbrales determinados, garantizando la estabilidad de la experiencia formativa (Hwang et al., 2015). 
Finalmente, el diseño instruccional se modula de forma continua en función de las métricas de entropía en 
tiempo real, lo que previene la sobrecarga cognitiva y mantiene la motivación de los estudiantes; cuando 
se detectan aumentos en la entropía, el algoritmo reorienta actividades, reconfigura grupos colaborativos 
o genera nuevos recursos de apoyo, de modo que se pueda regular la complejidad del proceso educativo 
y favorecer un aprendizaje más eficiente.

En conjunto, el Algoritmo THERMA ofrece un marco estructurado y f lexible que permite gestionar 
el desorden informacional, la generación de contenidos y la participación de los actores educativos en 
entornos complejos y dinámicos, ilustrado de forma operativa en la Figura 1. Este enfoque no solo contribuye 
a la gestión de la incertidumbre en la educación, sino que también potencia la coherencia y estabilidad 
pedagógica, aspectos cruciales para transformar la experiencia de aprendizaje en un entorno adaptativo 
y participativo.

Figura 1: Etapas de Algoritmo THERMA.

Gracias a la capacidad de adaptar y modular la entropía, las tecnologías emergentes como la EMG y 
la IA generativa consiguen una integración más eficiente y ética en la educación superior, potenciando al 
máximo la construcción colaborativa del conocimiento.

4. Metodología de Implementación y Evaluación
La integración de EMG, control de juegos e IA generativa se diseñó para ser replicable y fundamentada 

en estudios previos. Las señales EMG se registraron con un BITalino (r)evolution Plugged Kit BLE/BT 
(modelo 111) a 1 000 Hz, con filtros pasabajo y pasaalto a 113 Hz, extrayendo características temporales 
(MAV, RMS, ZC) y espectrales (PSD, MPF) que se mapearon dinámicamente a comandos de juego para 
ajustar la dificultad y la retroalimentación en tiempo real (Hwang et al., 2015). Paralelamente, se desarrolló 
un serious game ad hoc con mecánicas colaborativas y competitivas que utilizó el control EMG para manejar 
parámetros del avatar y capturar telemetría de rendimiento. La IA generativa (ChatGPT 3.5) se integró vía 
API y se comparó con un modelo entrenado en Kaggle para evaluar coherencia y precisión; los prompts se 
condicionaron a entradas fisiológicas y de usuario para ofrecer feedback adaptativo (Holmes et al., 2019).

La implementación empleó Python, TensorFlow y PyTorch para el entrenamiento de redes neuronales, y 
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GitHub para el versionado de código. Una arquitectura de comunicación en tiempo real sincronizó los flujos 
de datos de EMG, juego e IA, minimizando latencias críticas para la validez de la intervención (Selwyn, 2019). 
Durante un curso de Inteligencia Artificial en Ingeniería Matemática, picos de entropía informativa—indicadores 
de sobrecarga cognitiva—activaron la simplificación automática de tareas y estrategias colaborativas.

La evaluación combinó pruebas t de muestras apareadas y ANOVAs de medidas mixtas (informando 
Cohen’s d, η² e intervalos de confianza al 95 %) para cuantificar cambios en engagement, precisión y entropía  
(Lakens, 2013). El análisis cualitativo siguió el protocolo de Braun y Clarke (2006), con dos codificadores 
independientes y cálculo de Kappa de Cohen para fiabilidad (McHugh, 2012). La triangulación metodológica 
(Creswell y Plano Clark, 2017) vinculó los incrementos estadísticos en engagement con percepciones de 
inmersión y colaboración. La evolución de la entropía se visualizó con Matplotlib, confirmando la reducción 
del desorden informativo gracias al feedback adaptativo y los mecanismos de consenso.

Esta metodología mixta y validada demuestra que las interfaces EMG–juego–IA generan entornos de 
aprendizaje adaptativos y resilientes, transformando los datos en “energía pedagógica” y sentando las bases 
para futuras investigaciones en educomunicación universitaria (Chiappe, Amado y Leguizamón, 2020; Marín-
Suelves, Esnaola-Horacek y Donato, 2022; Pérez-Manzano y Almela-Baeza, 2018; StartUs Insights, n.d.).

5. Medición y discusión de los resultados
La eficacia del Modelo TermoAI y su Algoritmo THERMA en entornos educativos interactivos se 

validó mediante la combinación de biosseñales de EMG y tecnologías de IA generativa, configurando un 
sistema que cuantifica y optimiza los procesos de comunicación y aprendizaje. Este enfoque transforma la 
información en “energía pedagógica” al integrar la capacidad sensorial de la EMG y el control de juegos 
con una IA generativa que adapta contenidos y retroalimenta dinámicamente la experiencia educativa 
(Holmes et al., 2019; StartUs Insights, n.d.).

En primer lugar, se examinó la calidad de la interacción EMG regulada por la entropía. Para ello, se capturaron 
señales utilizando BITalino y se procesaron en Python, lo que permitió medir indicadores como la relación 
señal/ruido, las variaciones de entropía durante las tareas, la latencia y la precisión en la clasificación (Bérut 
et al., 2012; Landauer, 1961). Paralelamente, se evaluó el rendimiento de la IA generativa bajo restricciones 
de entropía, analizando la coherencia semántica de las respuestas, la reducción del desorden informativo y la 
claridad de la retroalimentación proporcionada. Además, se realizó un seguimiento del consenso colaborativo a 
través de la telemetría de GitHub, donde se interpretaron la densidad de commits y la velocidad de resolución 
de incidencias como indicadores de la eficacia grupal, lo cual permitió correlacionar la reducción de entropía 
con una mejor colaboración en la construcción del conocimiento (Zainuddin et al., 2020).

Figura 2: Dinámica de la Señal EMG y Entropía.

El análisis se extendió a la evaluación de la variabilidad en la señal EMG. La Figura 2 presenta la 
evolución temporal de la señal bruta de EMG junto con su entropía, calculada mediante una ventana móvil. 
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Figura 3: Comportamiento Colaborativo y Entropía.

Los datos revelaron fluctuaciones precisas vinculadas a las fases de aprendizaje, lo que indica que el sistema 
regula de forma simultánea el desorden informacional a medida que asimila nueva información. En este 
sentido, la EMG, al funcionar como una interfaz biológica, se convierte en un mediador que va más allá 
de las aproximaciones tradicionales, enriqueciendo el diálogo pedagógico y promoviendo la participación 
activa, como se refleja en la dinámica de la entropía (Holmes et al., 2019; Marín-Suelves et al., 2022).

Asimismo, la Figura 3 ilustra un diagrama de dispersión que muestra la relación entre una métrica de 
colaboración y el valor de entropía en el sistema. Se observó una correlación negativa significativa, de 
modo que a medida que aumenta la eficacia colaborativa –evidenciada en mayores niveles de consenso 
y cooperación–, la entropía disminuye. Esta relación resalta que un f lujo informativo más organizado se 
asocia con una mayor estabilidad y coherencia en el entorno de aprendizaje, y subraya la importancia de las 
estrategias colaborativas en la mejora de los procesos comunicativos y de coconstrucción del conocimiento 
(Holmes et al., 2019).

Figura 4: Variabilidad en la Señal EMG.

La Figura 4 (izquierda) muestra la distribución de frecuencias de los valores de la señal EMG mediante 
un histograma, mientras que la Figura 4 (derecha) presenta una estimación de densidad kernel (KDE). Estos 
análisis indican claramente la heterogeneidad de las mediciones, resaltando diferencias que se asocian a 
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la variabilidad fisiológica y cognitiva de los estudiantes. Esta variabilidad es clave para comprender cómo 
la EMG y el control de juegos pueden funcionar como interfaces mediadoras, pues permiten ajustar 
dinámicamente escenarios y recursos educativos en respuesta a cambios en la atención y la motivación. El 
análisis de la variabilidad en la señal facilita la identificación de momentos críticos –como picos de actividad 
durante tareas complejas o períodos de baja activación en situaciones que requieren apoyo adicional– y, 
a través del Algoritmo THERMA, el sistema puede implementar estrategias pedagógicas adaptativas para 
modular la complejidad de las actividades (Chiappe et al., 2020; Landauer, 1961).

La Figura 5 (parte superior izquierda) presenta diagramas de caja que comparan la precisión (accuracy) 
obtenida por dos modelos generativos, denominados Modelo A y Modelo B. La Figura 5 (parte superior 
derecha) muestra la capacidad de ambos modelos para reducir la entropía del sistema, y la parte inferior de 
la figura ilustra la relación existente entre la precisión y el nivel de entropía medido en el marco TermoAI. 
Estos resultados evidencian la necesidad de equilibrar la alta exactitud en las respuestas con la capacidad 
de minimizar el desorden informacional para lograr una organización óptima de la información y, por 
ende, un aprendizaje f luido y coherente (Holmes et al., 2019; Luckin et al., 2016). La sinergia entre la 
IA generativa y la EMG permite transformar señales musculares en comandos de juego o indicadores de 
participación, lo que refuerza la comunicación entre estudiantes y facilita la adaptación de los contenidos 
educativos en tiempo real (Marín-Suelves et al., 2022).

Figura 5: Métricas de Desempeño de los Modelos Generativos.

La Figura 6 (parte superior) ilustra los picos de entropía detectados a lo largo de los microestados, 
reflejando perturbaciones transitorias en el entorno de aprendizaje, mientras que la parte inferior muestra la 
distribución de los tiempos de recuperación necesarios para que el sistema retorne a un estado de estabilidad. 
Estos resultados demuestran la capacidad del sistema para recuperar rápidamente su coherencia y eficiencia 
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Figura 6: Análisis de Resiliencia del Sistema y Recuperación.

después de perturbaciones significativas, lo que es fundamental en entornos educativos complejos. La 
rápida recuperación de la entropía reafirma la importancia de integrar la EMG y los mecanismos de control 
de juegos, ya que permiten ajustar dinámicamente la interacción con la IA generativa para minimizar el 
desorden informacional y mantener la continuidad pedagógica (Chiappe et al., 2020; Luckin et al., 2016).

5.1. Análisis contextual profundo
Pensó durante un segundo

5.1. Análisis contextual profundo
Los resultados obtenidos con el Modelo TermoAI combinan evidencia cuantitativa y cualitativa 

que confirma su capacidad para regular el f lujo de información y potenciar el aprendizaje en entornos 
universitarios. Cuando la entropía informativa fue baja, la tasa de error media se redujo un 15 % (Landauer, 
1961), lo cual respalda la hipótesis de que un ciclo de aprendizaje gestionado termodinámicamente mejora 
la personalización y la estabilidad comunicativa. La hipótesis de consenso colaborativo se verificó con 
una disminución del 20 % en el tiempo de resolución de incidencias en GitHub, demostrando que la 
cooperación en la gestión de la información atenúa el desorden comunicativo (Marín-Suelves et al., 2022). 
En contraste, en escenarios de alta entropía la volatilidad de los resultados académicos se incrementó un 
17 %, confirmando el impacto negativo de la desorganización informativa sobre el rendimiento.

https://doi.org/10.5281/zenodo.18113613
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El vínculo entre la fidelidad de la señal EMG y la coherencia de las respuestas de IA (r = 0.72, p < 0.01) 
reveló que señales musculares más nítidas y salidas de IA más precisas se asocian con un 12 % adicional de 
participación y un 10 % de mejora en la toma de decisiones (Zawacki-Richter et al., 2019)2019. El análisis de 
microestados mostró que las plataformas con mayor resiliencia recuperan la entropía un 25 % más rápido 
tras perturbaciones, evidenciando una sólida capacidad de adaptación del sistema a fluctuaciones cognitivas.

No obstante, estos hallazgos son producto de un curso de Ingeniería Matemática en una universidad 
española con elevada alfabetización tecnológica y cultura colaborativa (Zainuddin et al., 2020). Dicha 
familiaridad facilitó la rápida adopción de interfaces EMG y mecanismos de consenso telemétrico, amplificando 
la reducción de entropía y los picos de resiliencia observados (Freire, 1970). En contextos con menor 
preparación digital o con tradiciones pedagógicas centradas en el texto y el discurso, los efectos podrían 
ser menos pronunciados. Por ello, recomendamos fases piloto de socialización y formación técnica para 
aclimatar a los estudiantes al uso de biofeedback y ludificación, así como el empleo de análisis temáticos y 
de contenido para captar las narrativas culturales que influyen en la apropiación de la tecnología.

Desde la perspectiva de Martín-Barbero (2002), las mediaciones tecnoculturales operan dentro de marcos 
simbólicos que configuran la percepción y el sentido de la experiencia educativa. En nuestro estudio, la ludificación 
mediada por EMG funcionó no solo como un recurso técnico, sino como un acto comunicativo situado en una cultura 
universitaria que valora la innovación y la experimentación controlada. Esa condición explicaría, en parte, por qué 
la resiliencia informacional —medida como rapidez de recuperación tras picos de entropía— fue especialmente 
notable: los estudiantes interpretaron los ajustes automáticos como una extensión de su propia agencia cognitiva.

Para otros entornos académicos —por ejemplo, en humanidades o artes, donde el diálogo crítico y la reflexión 
discursiva priman sobre la eficiencia algorítmica—, el Modelo TermoAI podría adaptarse para enfatizar dinámicas 
de debate y coconstrucción conceptual más que la mera optimización informacional. El análisis cualitativo de los 
comentarios de los participantes permitió identificar estos matices contextuales, subrayando la necesidad de diseñar 
intervenciones educomunicativas sensibles al capital cultural, tecnológico y simbólico de cada comunidad académica.

En definitiva, el análisis contextual profundo demuestra que, si bien EMG–game control e IA generativa 
pueden transformar la “energía pedagógica” de la información, su efectividad depende de las condiciones 
culturales y técnicas del entorno. La transferencia de este modelo exige un diseño flexible, capaz de incorporar 
fases de preparación tecnológica y de adaptar los mecanismos de feedback a las expectativas y prácticas 
comunicativas de cada disciplina. Esta reflexión crítica abre nuevas vías para investigar cómo las interfaces 
encarnadas pueden ser verdaderamente inclusivas y resilientes en la diversidad de contextos universitarios.

6. Conclusiones y Trabajo Futuro
La validación del Modelo TermoAI y su Algoritmo THERMA mostró que la combinación de bioseñales 

EMG, control de juegos e IA generativa configura un entorno capaz de transformar la información en 
“energía pedagógica”, optimizando la comunicación y el aprendizaje (Holmes et al., 2019; StartUs Insights, 
n.d.). Inicialmente, se examinó la calidad de la interacción EMG regulada por la entropía mediante señales 
capturadas con BITalino y procesadas en Python, midiendo relación señal/ruido, variaciones de entropía, 
latencia y precisión de clasificación (Holmes et al., 2019; Landauer, 1961). Simultáneamente, se evaluó el 
rendimiento de la IA generativa bajo restricciones de entropía—coherencia semántica, reducción de desorden 
informativo y claridad de feedback—y se correlacionó la densidad de commits y velocidad de resolución en 
GitHub con la reducción de entropía como indicador de eficacia grupal (Holmes et al., 2019).

El análisis de la variabilidad de la señal EMG (Figura 2) reveló f luctuaciones precisas asociadas a fases 
de aprendizaje, confirmando que el sistema adapta dinámicamente el desorden informativo conforme integra 
nueva información (Marín-Suelves et al., 2022; Pérez-Manzano y Almela-Baeza, 2018). La correlación 
negativa entre eficiencia colaborativa y entropía (Figura 3) subraya que un f lujo organizacional de la 
información favorece entornos estables y coherentes (Holmes et al., 2019). El histograma y KDE de la señal 
EMG (Figura 4) expusieron la heterogeneidad fisiológica y cognitiva de los estudiantes, base para estrategias 
adaptativas mediante THERMA (Chiappe et al., 2020). Los diagramas de caja de precisión y entropía 
de dos modelos generativos (Figura 5) mostraron que, aunque la exactitud es clave, debe equilibrarse 
con la minimización del desorden informativo para un aprendizaje f luido (Luckin et al., 2016). El análisis 
de resiliencia (Figura 6) evidenció recuperaciones de entropía un 25 % más rápidas tras perturbaciones, 
destacando la importancia de la respuesta inmediata de EMG–juego–IA (Hwang et al., 2015).
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Estos hallazgos emergen de un curso de Ingeniería Matemática en una universidad con alta alfabetización 
tecnológica y tradición colaborativa, factores que probablemente amplificaron la adopción de la interfaz 
EMG y la eficacia de los mecanismos de consenso (Zainuddin et al., 2020). En otros contextos —por 
ejemplo, en carreras de humanidades o instituciones con menor infraestructura tecnológica—, los efectos 
podrían ser menos pronunciados. Este carácter situado impone la necesidad de fases piloto de socialización y 
capacitación técnica, así como el uso de análisis temático y de contenido para entender cómo las percepciones 
culturales influyen en la apropiación de la tecnología y en la interpretación de la “energía pedagógica”.

La transferibilidad de nuestros resultados requiere adaptar el diseño de actividades a las particularidades 
de cada comunidad académica. Donde la confianza en interfaces sensoriales sea baja, conviene incorporar 
sesiones formativas previas sobre biofeedback y ludificación. En entornos que priorizan el diálogo crítico 
sobre la eficiencia informacional, el Modelo TermoAI podría reajustarse para enfatizar dinámicas discursivas 
y reflexivas, más que la mera reducción de entropía.

Como líneas de trabajo futuro, proponemos: (1) ampliar la muestra a disciplinas como humanidades y 
ciencias sociales para evaluar la generalizabilidad y ajustar la intervención a distintos capitales culturales; 
(2) incorporar señales biométricas adicionales (EEG, eyetracking) y análisis de contenido de los discursos 
generados para profundizar en mediaciones emocionales y simbólicas; (3) realizar evaluaciones longitudinales 
que midan el impacto sostenido del Modelo TermoAI en la evolución de competencias comunicativas y 
metacognitivas; y (4) diseñar y testar protocolos de socialización tecnológica, midiendo cómo la familiarización 
previa con EMG y ludificación modera los efectos de la intervención.

Estas acciones permitirán validar la robustez del Modelo TermoAI más allá de su contexto original y 
extraer lecciones para adaptar interfaces encarnadas a la diversidad de culturas educativas, contribuyendo 
al avance de la educomunicación crítica y al diseño de entornos de aprendizaje inclusivos y resilientes.
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