Non-Verbal Communication in the Classroom. Models of Social Contagion During an Exam in Secondary Education

Authors

  • Dr. José Arenas Departamento de Física Aplicada II, Universidad de Málaga, 29071 Málaga (España)
  • Dr. Pedro Carpena Departamento de Física Aplicada II e Instituto Carlos I de Física Teórica y Computacional, Universidad de Málaga, 29071 Málaga (España)

DOI:

https://doi.org/10.5281/zenodo.17217208

Keywords:

Interaction Analysis, Behavior, Educational Psychology, Social Interaction, Sociology, Cluster Analysis.

Abstract

When middle and high school students take an exam, they seem to deliver their exams not independently, forming clusters both in time (the moment of delivery) and in space (the location in the classroom of the students of consecutive deliveries), thus suggesting the existence of a contagion effect among the students. We have investigated this example of non-verbal communication phenomenon which can affect the student’s academic performance, by recording data of more than 500 students in two different high schools, to find out if the data are well fitted by known contagion models. Methodologically, we use appropriate templates to record the time of the exam delivery for the students of different classrooms in a whole academic year, and check later if these data can be described with the known Verhulst model, used to describe population growth with limited resources and the evolution of epidemics (such as COVID19). Our results show that the experimental data are well described by the Verhulst model when the limit of time for completing the exam does not affect the corresponding classroom, i.e., when all the students deliver in time. However, when the classroom is affected by the time limitations, the data are not well fitted by contagion models. Therefore, we can conclude that there exists a kind of non-verbal communication among students during an exam, leading to imitation behaviors when deciding the delivery of their tests if the limitation of time is not an issue. This phenomenon may be produced by different factors of social psicology (gregarious effect, group polarization, etc.) which could be the subject of future research, as well as the possible effect of this contagion on the academic performance of the students.

References

Aral, S., & Nicolaides, C. (2017). Exercise Contagion in a Global Social Network. Nature Communications, 8, 14753

Arenas, J. J. y Carpena, P. (2022). An Example of Social Interaction: Spatial Contagion Effect in Exams. Physica A: Statistical Mechanics and its Applications, 603, 127666. https://doi.org/10.1016/j.physa.2022.127666

Barrios-O’Neill, D. (2021). Focus and social contagion of environmental organization advocacy on Twitter. Conservation Biology, 35(1), 307-315. https://doi.org/10.1111/cobi.13564

Brandl, H. B., Pruessner, J. C., & Farine, D. R. (2022). The social transmission of stress in animal collectives. Proceedings of the Royal Society B: Biological Sciences, 289(1974), 20212158. https://doi.org/10.1098/rspb.2021.2158

Bray, R. M. y Noble, A. M. (1978). Authoritarianism and Decisions of Mock Juries: Evidence of Jury Bias and Group Polarization. Journal of Personality and Social Psychology, 36(12), 1424-1430. https://doi.org/10.1037/0022-3514.36.12.1424

Castellano, C., Fortunato, S. y Loreto, V. (2009). Statistical Physics of Social Dynamics. Reviews of Modern Physics, 81(2), 591-646. https://doi.org/10.1103/RevModPhys.81.591

Chang, X. (2023). Study on an SIR rumor propagation model with an interaction mechanism on WeChat networks. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.1089536

Feder, T. (2007). Statistical Physics is for the Birds. Physics Today, 60(10), 28-30. https://doi.org/10.1063/1.2800090

Fernández-Martínez, J. L., Fernández-Muñiz, Z., Cernea, A. y Kloczkowski, A. (2021). Predictive Mathematical Models of the Short-Term and Long-Term Growth of the COVID-19 Pandemic. Computational and Mathematical Methods in Medicine, 2021(1), 5556433. https://doi.org/10.1155/2021/5556433

Fujimoto, K. y Valente, T. W. (2012). Decomposing the Components of Friendship and Friends’ Influence on Adolescent Drinking and Smoking. Journal of Adolescent Health, 51(2), 136-143. https://doi.org/10.1016/j.jadohealth.2011.11.013

Gallup, A. C. (2024). Emotional Contagion in Animals: Connections and Applications. Animals, 14(20). Kane, A. A., van Swol, L. M., & Sarmiento-Lawrence, I. G. (2023). Emotional contagion in online groups as a function of valence and status. Computers in Human Behavior, 139, 107543. https://doi.org/10.1016/j.chb.2022.107543

Liao, C. N., Chen, Y. J., & Chen, V. (2023). Spread and control of medical rumors in a social network: A generalized diffusion model with a highly asymmetric network structure. Production and Operations Management, 32(11), 3683-3698. https://doi.org/10.1111/poms.14057

Liu, H., Zhang, D., Zhu, Y., Ma, H., & Xiao, H. (2025). Emotions spread like contagious diseases. Frontiers in Psychology, 16. https://doi.org/10.3389/fpsyg.2025.1493512

Lozano Díaz, A. (2003). Factores personales, familiares y académicos que afectan al fracaso escolar en la Educación Secundaria. Revista Electrónica de Investigación Psicoeducativa y Psicopedagógica, 1(1), 43-66. https://doi.org/10.25115/ejrep.1.101

Mackie, D. M. (1986). Social Identification Effects in Group Polarization. Journal of Personality and Social Psychology, 50(4), 720-728. https://doi.org/10.1037/0022-3514.50.4.720

Malthus, T. (2001). Malthus, T. (1798, 1985) An Essay on the Principle of Population: Thomas Malthus, 1766-1834. En G. D. Smith, D. Dorling, y M. Shaw (Eds.), Poverty, Inequality and Health in Britain: 1800-2000: A Reader (pp. 13-22). Policy Press. https://doi.org/10.56687/9781447342175-007

May, R. M. (1976). Simple Mathematical Models with Very Complicated Dynamics. Nature, 261(5560), 459-467. https://doi.org/10.1038/261459a0

Morales-Erosa, A. J., Reyes-Reyes, J., Astorga-Zaragoza, C. M., Osorio-Gordillo, G. L., García-Beltrán, C. D. y Madrigal-Espinosa, G. (2023). Growth Modeling Approach With the Verhulst Coexistence Dynamic Properties for Regulation Purposes. Theory in Biosciences, 142(3), 221-234. https://doi.org/10.1007/s12064-023-00397-x

Ostner, J., Wilken, J., & Schülke, O. (2021). Social contagion of affiliation in female macaques. Royal Society Open Science, 8(1), 201538. https://doi.org/10.1098/rsos.201538

Suire, A., & van Baalen, M. (2018). Rumour propagation and the eco-evolutionary dynamics of social information use. Proceedings of the Royal Society B: Biological Sciences, 285(1875), 20180088. https://doi.org/10.1098/rspb.2018.0088

Topîrceanu, A. (2017). Breaking Up Friendships in Exams: A Case Study for Minimizing Student Cheating in Higher Education Using Social Network Analysis. Computers & Education, 115, 171-187. https://doi.org/10.1016/j.compedu.2017.08.008

Usherwood, J. R., Stavrou, M., Lowe, J. C., Roskilly, K. y Wilson, A. M. (2011). Flying in a Flock Comes at a Cost in Pigeons. Nature, 474(7352), 494-497. https://doi.org/10.1038/nature10164

Valente, T. W., Fujimoto, K., Unger, J. B., Soto, D. W. y Meeker, D. (2013). Variations in Network Boundary and Type: A Study of Adolescent Peer Influences. Social Networks, 35(3), 309-316. https://doi.org/10.1016/j.socnet.2013.02.008

Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique (Ghent), 10, 113-129.

Yardi, S. y Boyd, D. (2010). Dynamic Debates: An Analysis of Group Polarization Over Time on Twitter. Bulletin of Science, Technology & Society, 30(5), 316-327. https://doi.org/10.1177/0270467610380011

Yin, R. y Muhammadhaji, A. (2024). Dynamics in a Delayed Rumor Propagation Model with Logistic Growth and Saturation Incidence. AIMS Mathematics, 9(2), 4962-4989. https://doi.org/10.3934/math.2024241

Published

2025-10-04

How to Cite

Dr. José Arenas, & Dr. Pedro Carpena. (2025). Non-Verbal Communication in the Classroom. Models of Social Contagion During an Exam in Secondary Education. Comunicar, 33(83), 67–75. https://doi.org/10.5281/zenodo.17217208

Issue

Section

Research Article