Perception and Detection of Cyberbullying: A Comparison between the Educative Community and GenAI

Authors

  • Dr. Ruben Nicolas-Sans UNIE Universidad (España)
  • Rocío Navarro Martínez UNIE Universidad (España)

DOI:

https://doi.org/10.5281/zenodo.15564949

Keywords:

Social Media, Cyberbullying, High Education, University Students, Ict, Artificial Intelligence.

Abstract

Bullying involves repeated and aggressive behaviors to intimidate or harm others, with cyberbullying being the kind that benefits from digital platforms to direct such messages. They both have serious consequences on students’ mental health and academic performance, demanding prevention and intervention strategies, including teacher training and the use of tools to detect these behaviors in university environments. Artificial Intelligence (AI), specifically generative AI, can automatically detect offensive language on digital platforms, resulting in an effective tool combating cyberbullying. This study investigates the capacity of members within a university community—students, faculty, and administrative staff—to perceive and detect cyberbullying in social media messages. The research utilizes generative AI tools to assess their effectiveness in recognizing cyberbullying patterns, comparing their results against expert evaluations. Results indicate that faculty members are most effective in identifying cyberbullying, while students show greater leniency, highlighting the need for targeted educational interventions. The generative AI models, despite limitations, demonstrate potential for early cyberbullying detection. Findings underscore the importance of training within educational communities and suggest that AI tools, when integrated into preventive programs, can enhance early intervention and promote safer digital environments.

References

Abarna, S., Sheeba, J. I., Jayasrilakshmi, S. y Devaneyan, S. P. (2022). Identification of cyber harassment and intention of target users on social media platforms. Engineering Applications of Artificial Intelligence, 115, 105283. https://doi.org/10.1016/j.engappai.2022.105283

Aggarwal, A. y Gaur, S. (2024). Applying Artificial Intelligence to Explore Online Harassment and Cyberbullying Prevention. En S. Ponnusamy, V. Bora, P. M. Daigavane, y S. S. Wazalwar (Eds.), Impact of AI on Advancing Women’s Safety (pp. 104-120). IGI Global. https://doi.org/10.4018/979-8-3693-2679-4.ch007

Azeez, N. A., Idiakose, S. O., Onyema, C. J. y Van Der Vyver, C. (2021). Cyberbullying Detection in Social Networks: Artificial Intelligence Approach. Journal of Cyber Security and Mobility, 10(4), 745-774. https://doi.org/10.13052/jcsm2245-1439.1046

Baidoo-Anu, D. y Owusu Ansah, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 52-62. https://doi.org/10.61969/jai.1337500

Baldassarre, M. T., Caivano, D., Fernandez Nieto, B., Gigante, D. y Ragone, A. (2023). The Social Impact of Generative AI: An Analysis on ChatGPT. En Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 363 373). Association for Computing Machinery. https://doi.org/10.1145/3582515.3609555

Bandi, A., Adapa, P. V. S. R. y Kuchi, Y. E. V. P. K. (2023). The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges. Future Internet, 15(8), 260. https://doi.org/10.3390/fi15080260

Barlett, C. P. (2015). Anonymously Hurting Others Online: The Effect of Anonymity on Cyberbullying Frequency. Psychology of Popular Media Culture, 4(2), 70-79. https://doi.org/10.1037/a0034335

Barreto, F., Moharkar, L., Shirodkar, M., Sarode, V., Gonsalves, S. y Johns, A. (2023). Generative Artificial Intelligence: Opportunities and Challenges of Large Language Models. En V. E. Balas, V. B. Semwal, y A. Khandare (Eds.), Intelligent Computing and Networking (pp. 545-553). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3177-4_41

Burger, C., Strohmeier, D. y Kollerová, L. (2022). Teachers Can Make a Difference in Bullying: Effects of Teacher Interventions on Students’ Adoption of Bully, Victim, Bully-Victim or Defender Roles across Time. Journal of Youth and Adolescence, 51(12), 2312-2327. https://doi.org/10.1007/s10964-022-01674-6

Campbell, M., Whiteford, C. y Hooijer, J. (2019). Teachers’ and parents’ understanding of traditional and cyberbullying. Journal of School Violence, 18(3), 388-402. https://doi.org/10.1080/15388220.2018.1507826

Cerezo, F. (2009). Bullying: análisis de la situación en las aulas españolas. International Journal of Psychology and Psychological Therapy, 9(3), 383-394. https://bit.ly/42UCz0c

Chai, T. y Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014

Chaudhary, S., Yadav, S., Kushwaha, S. y Shahi, S. R. P. (2020). A Brief Review of Machine Learning and its Applications. Samriddhi: A Journal of Physical Sciences, Engineering and Technology, 12(SUP 1), 218-223. https://www.smsjournals.com/index.php/SAMRIDDHI/article/view/1941

Cortés, A. F. M., De los Río, O. L. H. y Pérez, A. S. (2019). Factores de riesgo y factores protectores relacionados con el ciberbullying entre adolescentes: una revisión sistemática. Papeles del psicólogo, 40(2), 109-124. https://doi.org/10.23923/pap.psicol2019.2899

Crothers, L. M. y Levinson, E. M. (2004). Assessment of Bullying: A Review of Methods and Instruments. Journal of Counseling & Development, 82(4), 496-503. https://doi.org/10.1002/j.1556-6678.2004.tb00338.x

Egeberg, G., Thorvaldsen, S., Rønning, J. A. y Elstad, E. (2016). Digital Expectations and Experiences in Education. En The Impact of Cyberbullying and Cyber Harassment on Academic Achievement (pp. 183-204). Brill. https://doi.org/10.1007/9789463006484_012

Gabrielli, S., Rizzi, S., Carbone, S. y Donisi, V. (2020). A Chatbot-Based Coaching Intervention for Adolescents to Promote Life Skills: Pilot Study. JMIR Human Factors, 7(1), e16762. https://doi.org/10.2196/16762

Hadi, M. U., Qureshi, R., Shah, A., Irfan, M., Zafar, A., Shaikh, M. B., et al. (2023). A Survey on Large Language Models: Applications, Challenges, Limitations, and Practical Usage. Authorea Preprints. https://doi.org/10.36227/techrxiv.23589741.v1

Hinduja, S. (2023, Mayo 10). Generative AI as a Vector for Harassment and Harm. Cyberbullying Research Center. https://bit.ly/42S9Mtf

Hinduja, S. y Patchin, J. W. (2008). Cyberbullying: An Exploratory Analysis of Factors Related to Offending and Victimization. Deviant Behavior, 29(2), 129-156. https://doi.org/10.1080/01639620701457816

Houbre, B., Tarquinio, C., Thuillier, I. y Hergott, E. (2006). Bullying among students and its consequences on health. European Journal of Psychology of Education, 21(2), 183-208. https://doi.org/10.1007/BF03173576

Iwendi, C., Srivastava, G., Khan, S. y Maddikunta, P. K. R. (2023). Cyberbullying detection solutions based on deep learning architectures. Multimedia Systems, 29(3), 1839-1852. https://doi.org/10.1007/s00530-020-00701-5

Kargutkar, S. M. y Chitre, V. (2020). A Study of Cyberbullying Detection Using Machine Learning Techniques. En 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC) (pp. 734-739). IEEE. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000137

Kowalski, R. M. y Limber, S. P. (2007). Electronic Bullying Among Middle School Students. Journal of Adolescent Health, 41(6, Supplement), S22-S30. https://doi.org/10.1016/j.jadohealth.2007.08.017

Koyuturk, C., Yavari, M., Theophilou, E., Bursic, S., Donabauer, G., Telari, A., et al. (2023). Developing effective educational Chatbots with ChatGPT prompts: insights from preliminary tests in a case study on social media literacy (with appendix). arXiv preprint arXiv:2306.10645. https://doi.org/10.48550/arXiv.2306.10645

Lafrance St-Martin, L. I. y Villeneuve, S. (2024). The uses of chatbots in the context of children and teenagers bullying: a systematic literature review. Cogent Education, 11(1), 2312032. https://doi.org/10.1080/2331186X.2024.2312032

Landstedt, E. y Persson, S. (2014). Bullying, cyberbullying, and mental health in young people. Scandinavian Journal of Public Health, 42(4), 393-399. https://doi.org/10.1177/1403494814525004

Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I. y Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790

Lucas-Molina, B., Pérez-Albéniz, A., Solbes-Canales, I., Ortuño-Sierra, J. y Fonseca-Pedrero, E. (2022). Bullying, Cyberbullying and Mental Health: The Role of Student Connectedness as a School Protective Factor. Psychosocial Intervention, 31(1), 33 41. https://doi.org/10.5093/PI2022A1

Malik, T., Hughes, L., Dwivedi, Y. K. y Dettmer, S. (2023). Exploring the Transformative Impact of Generative AI on Higher Education. En M. Janssen, L. Pinheiro, R. Matheus, F. Frankenberger, Y. K. Dwivedi, I. O. Pappas, y M. Mäntymäki (Eds.), New Sustainable Horizons in Artificial Intelligence and Digital Solutions (pp. 69-77). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-50040-4_6

Mohamadi, S., Mujtaba, G., Le, N., Doretto, G. y Adjeroh, D. A. (2023). ChatGPT in the Age of Generative AI and Large Language Models: A Concise Survey. arXiv preprint arXiv:2307.04251. https://doi.org/10.48550/arXiv.2307.04251

Muzamil, M. y Shah, G. (2016). Cyberbullying and Self-Perceptions of Students Associated With Their Academic Performance. International Journal of Education and Development Using ICT, 12(3), 79-92. https://bit.ly/3TfWvY3

Naser, M. Z. y Alavi, A. H. (2023). Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Architecture, Structures and Construction, 3(4), 499-517. https://doi.org/10.1007/s44150-021-00015-8

Noblia, V., Renato, A. C. y Gershanik, T. (2022). Anonimato, pseudonimia y delitos en las redes sociales: una propuesta multidimensional de la lingüística forense para la identificación de autoría. Revista Latinoamericana de Estudios Del Discurso, 22(1), 122-142. https://doi.org/10.35956/v.22.n1.2022.p.122-142

Pichel, R., Feijóo, S., Isorna, M., Varela, J. y Rial, A. (2022). Analysis of the relationship between school bullying, cyberbullying, and substance use. Children and Youth Services Review, 134, 106369. https://doi.org/10.1016/j.childyouth.2022.106369

Reynoso, T. M., González, B. M. y López, A. S. (2021). Ciberbullying, brecha digital y habilidades digitales para ciberconvivencia: descripción en estudiantes de bachillerato. Voces de la educación, 6(12), 22-44. https://www.revista.vocesdelaeducacion.com.mx/index.php/voces/article/view/386

Schneider, S. K., O’donnell, L., Stueve, A. y Coulter, R. W. S. (2012). Cyberbullying, School Bullying, and Psychological Distress: A Regional Census of High School Students. American Journal of Public Health, 102(1), 171-177. https://doi.org/10.2105/AJPH.2011.300308

Schulenberg, K., Li, L., Freeman, G., Zamanifard, S. y McNeese, N. J. (2023). Towards Leveraging AI-based Moderation to Address Emergent Harassment in Social Virtual Reality. En A. Schmidt, K. Väänänen, T. Goyal, P. O. Kristensson, A. Peters, S. Mueller, J. R. Williamson, y M. L. Wilson (Eds.), Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-17). Association for Computing Machinery. https://doi.org/10.1145/3544548.3581090

Sidiropoulos, D. y Anagnostopoulos, C.-N. (2024). Applications, challenges and ethical issues of AI and ChatGPT in education. arXiv preprint arXiv:2402.07907. https://doi.org/10.48550/arXiv.2402.07907

Tesfagergish, S. G. y Damaševi?ius, R. (2024). Explainable Artificial Intelligence for Combating Cyberbullying. En K. K. Patel, K. C. Santosh, A. Patel, y A. Ghosh (Eds.), Soft Computing and Its Engineering Applications (pp. 54-67). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-53731-8_5

Tokunaga, R. S. (2010). Following you home from school: A critical review and synthesis of research on cyberbullying victimization. Computers in Human Behavior, 26(3), 277-287. https://doi.org/10.1016/j.chb.2009.11.014

Tukey, J. W. (1993). Exploratory Data Analysis: Past, Present and Future. Defense Technical Information Center. https://bit.ly/3SZ1nj6

Ventura, P. D. B., Rodríguez-García, A. M. y Reche, J. M. S. (2018). Incidencia del ciberbullying en adolescentes de 11 a 17 años en Portugal. Edutec. Revista Electrónica de Tecnología Educativa, (64), 82-98. https://doi.org/10.21556/edutec.2018.64.1029

Wang, J., Iannotti, R. J. y Nansel, T. R. (2009). School Bullying Among Adolescents in the United States: Physical, Verbal, Relational, and Cyber. Journal of Adolescent Health, 45(4), 368-375. https://doi.org/10.1016/j.jadohealth.2009.03.021

Ybarra, M. L. y Mitchell, K. J. (2004). Youth engaging in online harassment: associations with caregiver–child relationships, Internet use, and personal characteristics. Journal of Adolescence, 27(3), 319-336. https://doi.org/10.1016/j.adolescence.2004.03.007

Yousef, W. S. M. y Bellamy, A. (2015). The Impact of Cyberbullying on the Self-Esteem and Academic Functioning of Arab American Middle and High School Students. Electronic Journal of Research in Educational Psychology, 13(3), 463-482. https://doi.org/10.14204/ejrep.37.15011

Published

2025-04-26

How to Cite

Dr. Ruben Nicolas-Sans, & Rocío Navarro Martínez. (2025). Perception and Detection of Cyberbullying: A Comparison between the Educative Community and GenAI. Comunicar, 33(80). https://doi.org/10.5281/zenodo.15564949