Dronics in Higher Education and Inclusive Education: Proposal For Educational Innovation from above

Authors

  • Dr. Miriam Martínez Muñoz The Universidad a Distancia de Madrid (UDIMA), Spain

DOI:

https://doi.org/10.5281/zenodo.15565903

Keywords:

Education, UAV, Innovation, STEM, Technology

Abstract

Access to quality higher education remains a challenge, especially for students with physical, sensory or cognitive disabilities, and those in remote communities. Higher education institutions face the need to offer inclusive solutions, taking advantage of technology to eliminate barriers. The use of drones has the potential to transform higher education, removing barriers and promoting the participation of students with diverse needs. This innovation fosters a more inclusive, collaborative and technologically advanced learning model. Unmanned aerial vehicles (UAV) can offer many advantages for higher education and research, especially in fields that require remote sensing, aerial mapping, environmental monitoring or disaster response. For example, UAVs can allow students and researchers to collect high-resolution images, videos, and sensor data from different perspectives and locations, which can improve their spatial awareness, analytical skills, and scientific research. UAVs can also facilitate collaborative and interdisciplinary learning and research, as they can be used to share data and ideas across disciplines, institutions and regions. Additionally, UAVs can foster creativity and innovation as they can be used to design and test new solutions, prototypes and methods for various problems and scenarios. Introduce gamification and other active drone learning methodologies, where students solve challenges related to their area of study (for example, aerial tracking of “treasures” in geology or rescue simulations in civil engineering). This work proposes the use of drones as an educational innovation focused on inclusion, by offering tools that complement teaching and learning models in higher education through an interdisciplinary approach. Drones can be used to help improve orientation skills, motor skills, and even give students a better understanding of how the world around us works.

References

Barron, B. J. S., Schwartz, D. L., Vye, N. J., Moore, A., Petrosino, A., Zech, L., et al. (1998). Haciendo con comprensión: Lecciones de la investigación sobre aprendizaje basado en problemas y proyectos. Journal of the Learning Sciences, 7(3-4), 271-311. https://doi.org/10.1080/10508406.1998.9672056

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivando el aprendizaje basado en proyectos: Sosteniendo la acción, apoyando el aprendizaje. Educational Psychologist, 26(3-4), 369-398. https://doi.org/1 0.1080/00461520.1991.9653139

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What Is STEM? A Discussion About Conceptions of STEM in Education and Partnerships. School Science and Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Cavalcante, M. T. L., Riberas, G., & Rosa, G. (2016). Fomento de la innovación en los grados de trabajo social y educación social: entorno multilingüe y herramientas para el cambio social. International Journal of Educational Technology in Higher Education, 13(1), 31. https://doi.org/10.1186/s41239-016-0031-0

Chounta, I.-A., Manske, S., & Hoppe, H. U. (2017). “De la creación al aprendizaje”: presentación de los campamentos de desarrollo como paradigma educativo para reinventar el aprendizaje basado en problemas. International Journal of Educational Technology in Higher Education, 14(1), 21. https://doi.org/10.1186/s41239-017-0061-2

De Loof, H., Struyf, A., Boeve-de Pauw, J., & Van Petegem, P. (2021). Teachers’ Motivating Style and Students’ Motivation and Engagement in STEM: the Relationship Between Three Key Educational Concepts. Research in Science Education, 51(1), 109-127. https://doi.org/10.1007/s11165-019-9830-3

Garcia-Bermudez, J., Baudrier, L., Bayraktar, E. C., Shen, Y., La, K., Guarecuco, R., et al. (2019). Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature, 567(7746), 118-122. https://doi.org/10.1038/s41586-019-0945-5

Gómez-Bustamante, J. A., & Martínez-Cogollo, A. L. (2018). Robótica educativa como propuesta de innovación pedagógica. Gestión Competitividad e Innovación, 6(2), 1-12. https://pca.edu.co/editorial/revistas/index.php/gci/article/view/41

Jovanovi?, V. M., McLeod, G., Alberts, T. E., Tomovic, C., Popescu, O., Batts, T., et al. (2019). Exposing Students to STEM Careers through Hands-on Activities with Drones and Robots. Engineering Technology Faculty Publications, 132. https://digitalcommons.odu.edu/engtech_fac_pubs/132

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z

Kennedy, T. J., & Odell, M. R. L. (2014). Engaging Students in STEM Education. Science Education International, 25(3), 246-258. https://www.icaseonline.net/sei/september2014/p1.pdf

Lantz Jr, H. B. (2009). Science, Technology, Engineering, and Mathematics (STEM) Education What Form? What Function? Report, CurrTech Integrations, Baltimore. https://www.uastem.com/wp-content/uploads/2012/08/STEMEducationArticle.pdf

Martin-Hansen, L. (2018). Examining ways to meaningfully support students in STEM. International Journal of STEM Education, 5(1), 53. https://doi.org/10.1186/s40594-018-0150-3

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522

Morrison, J. (2006). TIES STEM Education Monograph Series: Attributes of STEM Education The Student The School The Classroom. TIES (Teaching Institute for Excellence in STEM), 20(2), 1-7. https://leadingpbl.pbworks.com/f/Jans%20pdf%20Attributes_of_STEM_Education-1.pdf

Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research, 110(3), 221-223. https://doi.org/10.1080/00220671.2017.1289775

Sullivan, A., & Bers, M. U. (2018). Dancing Robots: Integrating Art, Music, and Robotics in Singapore’s Early Childhood Centers. International Journal of Technology and Design Education, 28(2), 325-346. https://doi.org/10.1007/s10798-017-9397-0

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., et al. (2018). Integrated STEM Education: A Systematic Review of Instructional Practices in Secondary Education. European Journal of STEM Education, 3(1), 1-12. https://doi.org/10.20897/EJSTEME/85525

Thomas, J. W. (2000). A Review of Research on Project-Based Learning. California: Autodesk Foundation. https://tecfa.unige.ch/proj/eteach-net/Thomas_researchreview_PBL.pdf

Tsupros, N., Kohler, R., & Hallinen, J. (2009). STEM Education: A Project to Identify the Missing Components. Intermediate Unit 1: Carnegie Mellon University, Pennsylvania.

Voštinár, P., Horváthová, D., & Klimová, N. (2018). The Programmable Drone for STEM Education. In E. Clua, L. Roque, A. Lugmayr, & P. Tuomi (Eds.), Entertainment Computing – ICEC 2018 (pp. 205-210). Springer International Publishing. https://doi.org/10.1007/978-3-319-99426-0_18

Wang, H.-H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM Integration: Teacher Perceptions and Practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 2. https://doi.org/10.5703/1288284314636

Published

2025-04-26

How to Cite

Dr. Miriam Martínez Muñoz. (2025). Dronics in Higher Education and Inclusive Education: Proposal For Educational Innovation from above. Comunicar, 33(80). https://doi.org/10.5281/zenodo.15565903