Comunicación Visual, Aprendizaje Móvil, Motivación para el Aprendizaje, Facilidad de Uso de la Interfaz de Usuario, Carga Cognitiva


Este estudio explora el diseño de la comunicación visual para aplicaciones móviles de aprendizaje a través de la facilidad de uso de la interfaz de usuario y el engagement con el aprendizaje. También se observó el efecto mediador de la carga cognitiva en la relación entre la facilidad de uso de la interfaz de usuario y el engagement con el aprendizaje. El método adoptado para el estudio fue el cuantitativo y los datos se recogieron adoptando una estrategia de encuesta por cuestionario. Los datos se recopilaron en centros de enseñanza superior de China situados en distintas regiones y la población objetivo del estudio eran los estudiantes matriculados actualmente en dichos centros. El estudio puso a prueba las hipótesis de la investigación mediante un modelo de ecuaciones estructurales. Se utilizó el AFC para evaluar la idoneidad del modelo de medición. Las conclusiones del estudio indicaron que la interfaz de usuario y el compromiso de los estudiantes eran indicadores eficaces del diseño de la comunicación visual. El estudio supondría una gran contribución al tratar el tema emergente del diseño de la comunicación visual en el sector educativo de China, abogando por el uso de aplicaciones móviles de aprendizaje. El estudio también ofrece importantes perspectivas a los gestores y responsables políticos. Los futuros investigadores podrían utilizar un diseño de investigación cualitativo para analizar las perspectivas, los puntos de vista y las opiniones subjetivas sobre el tema.


Ab Hamid, M., Sami, W., & Sidek, M. M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890(1), 012163.
Adiloglu, F. (2011). Visual communication: design studio education through working the process. Procedia-Social and Behavioral Sciences, 28, 982-991.
Akbarov, B. (2022). Formation of Professional Motivation of Students in the Educational Process. Galaxy International Interdisciplinary Research Journal, 10(4), 702-704.
Aremu, B. V., & Adeoluwa, O. V. (2021). M-learning: A nexus for adult learners’ motivation and readiness to learn in federal universities at Southwest, Nigeria. Journal of Digital Educational Technology, 2(1), e p22 01.
Bateman, K. J., Wilson, S. E., Ingvarsson, E., Doucette, J., Therrien, W., Nevill, R., & Mazurek, M. (2023). Snack Talk: Effects of a Naturalistic Visual Communication Support on Increasing Conversation Engagement for Adults with Disabilities. Behavior Analysis in Practice, 1-15.
Benden, D. K., & Lauermann, F. (2022). Students’ motivational trajectories and academic success in math-intensive study programs: Why short-term motivational assessments matter. Journal of Educational Psychology, 114(5), 1062-1085.
Bernacki, M. L., Greene, J. A., & Crompton, H. (2020). Mobile technology, learning, and achievement: Advances in understanding and measuring the role of mobile technology in education. Contemporary Educational Psychology, 60, 101827.
Calvo, L., Christel, I., Terrado, M., Cucchietti, F., & Pérez-Montoro, M. (2022). Users’ cognitive load: A key aspect to successfully communicate visual climate information. Bulletin of the American Meteorological Society, 103(1), E1-E16. MS-D-20-0166.1
Castro-Alonso, J. C., Ayres, P., & Sweller, J. (2019). Instructional Visualizations, Cognitive Load Theory, and Visuospatial Processing. In J. Castro-Alonso (Ed.), Visuospatial Processing for Education in Health and Natural Sciences ( p p . 111-14 3 ). Springer.
Chen, T., Peng, L., Jing, B., Wu, C., Yang, J., & Cong, G. (2020). The impact of the COVID-19 pandemic on user experience with online education platforms in China. Sustainability, 12(18), 7329.
Cheung, G. W., & Wang, C. (2017). Current Approaches for Assessing Convergent and Discriminant Validity with SEM: Issues and Solutions. Academy of Management Proceedings, 2017(1), 1270 6.
Curum, B., & Khedo, K. K. (2021). Cognitive load management in mobile learning systems: principles and theories. Journal of Computers in Education, 8, 109-136.
Djeki, E., Dégila, J., Bondiombouy, C., & Alhassan, M. H. (2022). E-learning bibliometric analysis from 2015 to 2020. Journal of Computers in Education, 9(4), 727-754.
Feldon, D. F., Callan, G., Juth, S., & Jeong, S. (2019). Cognitive Load as Motivational Cost. Educational Psychology Review, 31, 319 -337.
Fisher, M. J., & Marshall, A. P. (2009). Understanding descriptive statistics. Australian Critical Care, 22(2), 93-97. 03
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388.
Gangaiamaran, R., & Pasupathi, M. (2017). Review on Use of Mobile Apps for Language Learning. International Journal of Applied Engineering Research, 12( 21) , 112 4 2 -112 51.
Gutiérrez Carreón, G., Daradoumis, T., Jorba, J., & Gomar, C. (2020). A study on the effectiveness of an undergraduate online teaching laboratory with semantic mechanism from a student perspective. Journal of Information Technology Education: Innovations in Practice, 19, 137-155.
Hadi, N. U., Abdullah, N., & Sentosa, I. (2016). An easy approach to exploratory factor analysis: Marketing perspective. Journal of Educational and Social Research, 6(1), 215.
Hammady, R., Ma, M., & Powell, A. (2018). User experience of markerless augmented reality applications in cultural heritage museums:‘museumeye’as a case study. In Augmented Reality, Virtual Reality, and Computer Graphics: 5th International Conference, AVR 2018, Otranto, Italy, June 24–27, 2018, Proceedings, Part II 5 (pp. 349-369). Springer.
Harpur, P., & De Villiers, M. (2015). MUUX-E, a framework of criteria for evaluating the usability, user experience and educational features of m-learning environments. South African Computer Journal, 56(1), 1-21.
Hermanto, Y. A. L., Pahlevi, A. S., Sutrisno, A. A., & Ibrahim, N. B. (2021). Mega shifts in the business pivot in visual communication design subsector during the COVID-19 pandemic. KnE Social Sciences, 394–402.
Huang, C. L., Luo, Y. F., Yang, S. C., Lu, C. M., & Chen, A.-S. (2020). Inf luence of students’ learning style, sense of presence, and cognitive load on learning outcomes in an immersive virtual reality learning environment. Journal of Educational Computing Research, 58(3), 596 - 615.
Huang, Z., & Benyoucef, M. (2022). A systematic literature review of mobile application usability: addressing the design perspective. Universal Access in the Information Society, 22, 715 –735.
Kabrisky, M. (1964). A proposed model for visual information processing in the human brain [Doctoral Dissertation, University of Illinois at Urbana-Champaign].
Ke, P., & Su, F. (2018). Mediating effects of user experience usability: An empirical study on mobile library application in China. The Electronic Library, 36(5), 892-909.
Klimova, B., & Polakova, P. (2020). Students’ perceptions of an EFL vocabulary learning mobile application. Education Sciences, 10(2), 37.
Krull, G., & Duart, J. M. (2017). Research trends in mobile learning in higher education: A systematic review of articles (2011–2015). International Review of Research in Open and Distributed Learning, 18(7).
Kumar Basak, S., Wotto, M., & Belanger, P. (2018). E-learning, M-learning and D-learning: Conceptual definition and comparative analysis. E-learning and Digital Media, 15(4), 191-216.
Liu, L., Zhang, L., Ye, P., & Liu, Q. (2018). Inf luence factors of satisfaction with mobile learning APP: An empirical analysis of China. International Journal of Emerging Technologies in Learning, 13(3), 87-99.
Liu, Y., Al-Atawi, A. A., Khan, I. A., Gohar, N., & Zaman, Q. (2023). Using the fuzzy analytical hierarchy process to prioritize the impact of visual communication based on artificial intelligence for long-term learning. Soft Computing, 27(1), 157-16 8.
Martin, F., & Borup, J. (2022). Online learner engagement: Conceptual definitions, research themes, and supportive practices. Educational Psychologist, 57(3), 162 -177.
Nie, R. (2018). Research on dynamic visual communication graphics design under mobile terminal platform. In 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) (pp. 198-201). IEEE.
Paas, F., & van Merriënboer, J. J. (2020). Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Current Directions in Psychological Science, 29(4), 394-398.
Park, K., Farb, A., & George, B. (2023). Effectiveness of visual communication and collaboration tools for online GIS teaching: Using Padlet and Conceptboard. Journal of Geography in Higher Education, 47(3), 399- 410.
Parsazadeh, N., Ali, R., & Rezaei, M. (2018). A framework for cooperative and interactive mobile learning to improve online information evaluation skills. Computers & Education, 120, 75-89.
Pratama, D., Gunarti, W., & Akbar, T. (2017). Understanding visual novel as artwork of visual communication design. Mudra Jurnal Seni Budaya, 32(3), 292-298.
Prati, E., Peruzzini, M., Pellicciari, M., & Raffaeli, R. (2021). How to include User eXperience in the design of Human-Robot Interaction. Robotics and Computer-Integrated Manufacturing, 68, 102072.
Raiyn, J. (2016). The Role of Visual Learning in Improving Students’ High-Order Thinking Skills. Journal of Education and Practice, 7( 2 4 ) , 115 -121.
Rice, S., Winter, S. R., Doherty, S., & Milner, M. (2017). Advantages and disadvantages of using internet-based survey methods in aviation-related research. Journal of Aviation Technology and Engineering, 7(1), 5.
Saris, B. (2020). A review of engagement with creativity and creative design processes for visual communication design (VCD) learning in China. International Journal of Art & Design Education, 39( 2), 306 -318.
Sayibu, M., Jianxun, C., Akintunde, T. Y., Hafeez, R. O., Koroma, J., Amosun, T. S., & Shahani, R. (2021). Nexus between students’ attitude towards self-learning, Tencent APP usability, mobile-learning, and innovative performance. Social Sciences & Humanities Open, 4(1), 10 0 217. ho.2021.10 0217
Song, S., Zhao, Y. C., Yao, X., Ba, Z., & Zhu, Q. (2021). Short video apps as a health information source: an investigation of affordances, user experience and users’ intention to continue the use of TikTok. Internet Research, 31(6 ), 2120 -2142.
Sun, W., Hong, J.-C., Dong, Y., Huang, Y., & Fu, Q. (2023). Self-directed learning predicts online learning engagement in higher education mediated by perceived value of knowing learning goals. The Asia-Pacific Education Researcher, 32( 3), 3 07-316.
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 2 9 5 -312.
Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1-16.
Taherdoost, H., Sahibuddin, S., & Jalaliyoon, N. (2022). Exploratory Factor Analysis; Concepts and Theory. Advances in Applied and Pure Mathematics, 27, 375-382.
Wang, Y., Liu, X., & Zhang, Z. (2018). An overview of e-learning in China: History, challenges and opportunities. Research in Comparative and International Education, 13(1), 195 -210.
Weinstein, C. E., & Mayer, R. E. (1983). The Teaching of Learning Strategies. Innovation Abstracts, 5(32), n32.
Wijaya, O. P., & Bukhori, I. (2017). Effect of Learning Motivation, Family Factor, School Factor, and Community Factor on Student Learning Outcomes on Productive Subjects. JPBM (Jurnal Pendidikan Bisnis dan Manajemen), 3(3), 192-202. m 0 03v3i32017p192
Wileman, R. E. (1993). Visual Communicating. Educational Technology.
Worth, S. (2016). Studying Visual Communication. University of Pennsylvania Press.
Wu, H., & Li, G. (2020). Innovation and improvement of visual communication design of mobile app based on social network interaction interface design. Multimedia Tools and Applications, 79, 1-16.
Yang, C. C. Y., & Ogata, H. (2023). Personalized learning analytics intervention approach for enhancing student learning achievement and behavioral engagement in blended learning. Education and Information Technologies, 28(3), 2509-2528.
Yu, Z., Gao, M., & Wang, L. (2021). The effect of educational games on learning outcomes, student motivation, engagement and satisfaction. Journal of Educational Computing Research, 59(3), 522-546.
Zhai, X. (2022). ChatGPT User Experience: Implications for Education. Available at SSRN 4312418.


No Funds Available


Technical information

Received: 2023-05-25 | Reviewed: 2023-06-30 | Accepted: 2023-09-01 | Online First: 2023-12-20 | Published: 2024-03-31


Metrics of this article

Views: 38099

Abstract readings: 36810

PDF downloads: 1289

Full metrics of Comunicar 77

Views: 459033

Abstract readings: 446071

PDF downloads: 12962

Cited by

Cites in Web of Science

Currently there are no citations to this document

Cites in Scopus

Currently there are no citations to this document

Cites in Google Scholar

Currently there are no citations to this document


Альтернативные метрики

Как процитировать

Yang Jingmiao. (2024). Diseño de Comunicación Visual para Aplicaciones Móviles de Aprendizaje: Usabilidad de la Interfaz de Usuario y el Engagement con el Aprendizaje. Comunicar, 32(78). 10.58262/V32I78.19



Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul United Kingdom



Creative Commons

Данный сайт использует куки-файлы для получения статистических данных о навигации своих пользователей. Если вы продолжите просмотр, мы считаем, что вы принимаете его использование. +info X