关键词
神经教育、脑电图、神经生理学测量、初等教育、教育背景、案例研究
摘要
最新的无线脑电图设备 (EEG) 允许在实验室外的环境中进行记录。然而,对于它的使用我们还需要考虑许多细节。我们通过对一组三年级小学生的案例研究,旨在展示在教育环境中使用这些设备进行研究的一些潜力和局限性。在本研究的进行过程中,我们观察到了以下几个平衡:在研究团队和教育界的利益和可能性之间的平衡;在课堂生活的扭曲与学术界与实践之间的合作机会之间的平衡;以及预算和设备准备的难易程度以及所收集数据的有用性之间的关系。该设备的潜力之一是允许在不同的认知和情感过程中获取知识,以及研究人员和教育社区之间的联系所代表的学习机会。课堂生活会被这种类型的研究打断,但这也可以促进未来更加综合的发展,从而有利于教学和学习过程。
参考资料
Akalin-Acar, Z., & Makeig, S. (2013). Effects of forward model errors on EEG source localization. Brain topography, 26(3), 378-396. https://doi.org/10.1007/s10548-012-0274-6
Link DOI | Link Google Scholar
Antonenko, P., Paas, F., Grabner, R., & Van-Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22(4), 425-438. https://doi.org/10.1007/s10648-010-9130-y
Link DOI | Link Google Scholar
Basar, E., Basar-Eroglu, C., Karakas, S., & Schürmann, M. (1999). Oscillatory brain theory: A new trend in neuroscience. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society, 18(3), 56-66. https://doi.org/10.1109/51.765190
Link DOI | Link Google Scholar
Bevilacqua, D., Davidesco, I., Wan, L., Chaloner, K., Rowland, J., Ding, M., Poeppel, D., & Dikker, S. (2019). Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: evidence from a real-world classroom electroencephalography study. Journal of Cognitive Neuroscience, 31(3), 401-11. https://doi.org/10.1162/jocn_a_01274
Link DOI | Link Google Scholar
Browarska, N., Kawala-Sterniuk, A., Zygarlicki, J., Podpora, M., Pelc, M., Martinek, R., & Gorzelanczyk, E.J. (2021). Comparison of smoothing filters' influence on quality of data recorded with the emotiv EPOC Flex brain-computer interface headset during audio stimulation. Brain sciences, 11(1), 98. https://doi.org/10.3390/brainsci11010098
Link DOI | Link Google Scholar
Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42. https://doi.org/10.3102/0013189X018001032
Link DOI | Link Google Scholar
Coan, J.A., & Allen, J.J. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1-2), 7-50. https://doi.org/10.1016/j.biopsycho.2004.03.002
Link DOI | Link Google Scholar
Craik, A., He, Y., & Contreras-Vidal, J.J. (2019). Deep learning for electroencephalogram (EEG) classification tasks: A review. Journal of Neural Engineering, 16(3), 031001. https://doi.org/10.1088/1741-2552/ab0ab5
Link DOI | Link Google Scholar
Dikker, S., Haegens, S., Bevilacqua, D., Davidesco, I., Wan, L., Kaggen, L., McClintock, J., Chaloner, K., Ding, M., West, T., & Poeppel, D. (2020). Morning brain: Real-world neural evidence that high school class times matter. Social Cognitive and Affective Neuroscience, 15(11), 1193-1202. https://doi.org/10.1093/scan/nsaa142
Link DOI | Link Google Scholar
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Michalareas, G., Van Bavel, J.J., Ding, M., & Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375-80. https://doi.org/10.1016/j.cub.2017.04.002
Link DOI | Link Google Scholar
Glaser, B., & Strauss, A. (2006). The discovery of grounded theory. Aldine Transaction.
Link Google Scholar
Grammer, J.K., Xu, K., & Lenartowicz, A. (2021). Effects of context on the neural correlates of attention in a college classroom. NPJ science of learning, 6(1), 15. https://doi.org/10.1038/s41539-021-00094-8
Link DOI | Link Google Scholar
Hajare, R., & Kadam, S. (2021). Comparative study analysis of practical EEG sensors in medical diagnoses. Global Transitions Proceedings, 2(2), 467-475. https://doi.org/10.1016/j.gltp.2021.08.009
Link DOI | Link Google Scholar
Howard-Jones, P.A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., Laurillard, D., & Thomas, M.S.C. (2016). The principles and practices of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 620-627. https://doi.org/10.1037/rev0000036
Link DOI | Link Google Scholar
Janssen, T.W.P., Grammer, J.K., Bleichner, M.G., Bulgarelli, C., Davidesco, I., Dikker, S., Jasi?ska, K.K., Siugzdaite, R., Vassena, E., Vatakis, A., Zion-Golumbic, E., & van Atteveldt, N. (2021). Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience. Mind, Brain and Education, 15(4), 354-370. https://doi.org/10.1111/mbe.12302
Link DOI | Link Google Scholar
Katzir, T., & Paré-Blagoev, J. (2006). Applying cognitive neuroscience research to education: The case of literacy. Educational Psychologist, 41(1), 53-74. https://doi.org/10.1207/s15326985ep4101_6
Link DOI | Link Google Scholar
Khedher, A.B., Jraidi, I., & Frasson, C. (2019). Tracking students’ mental engagement using EEG signals during an interaction with a virtual learning environment. Journal of Intelligent Learning Systems and Applications, 11(1), 1-14. https://doi.org/10.4236/jilsa.2019.111001
Link DOI | Link Google Scholar
Krigolson, O.E., Williams, C.C., Norton, A., Hassall, C.D., & Colino, F.L. (2017). Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Frontiers in Neuroscience, 11, 109. https://doi.org/10.3389/fnins.2017.00109
Link DOI | Link Google Scholar
Lau-Zhu, A., Lau, M.P.H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635
Link DOI | Link Google Scholar
Liu, Y., & Zhang, Y. (2021). Developing sustaining authentic partnership between MBE researchers and local schools. Mind, Brain, and Education, 15(2), 153-162. https://doi.org/10.1111/mbe.12280
Link DOI | Link Google Scholar
Mason L. (2009). Bridging neuroscience and education: A two-way path is possible. Cortex, 45(4), 548-549. https://doi.org/10.1016/j.cortex.2008.06.003
Link DOI | Link Google Scholar
Matusz, P.J., Dikker, S., Huth, A.G., & Perrodin, C. (2019). Are we ready for real-world neuroscience? Journal of Cognitive Neuroscience, 31(3), 327-338. https://doi.org/10.1162/jocn_e_01276
Link DOI | Link Google Scholar
McMahan, T., Parberry, I., & Parsons, T.D. (2015). Evaluating player task engagement and arousal using electroencephalography. Procedia Manufacturing, 3, 2303-2310. https://doi.org/10.1016/j.promfg.2015.07.376
Link DOI | Link Google Scholar
Pope, A.T., Bogart, E.H., & Bartolome, D.S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40(1-2), 187-195. https://doi.org/10.1016/0301-0511(95)05116-3
Link DOI | Link Google Scholar
Rose, N., & Abi-Rached, J. (2014). Governing through the brain: Neuropolitics, neuroscience and subjectivity. The Cambridge Journal of Anthropology, 32(1), 3-23. https://doi.org/10.3167/ca.2014.320102
Link DOI | Link Google Scholar
Shad, E.H.T., Molinas, M., & Ytterdal, T. (2020). Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sensors Journal, 20(24), 14565-14577. https://doi.org/10.1109/JSEN.2020.3012394
Link DOI | Link Google Scholar
Shamay-Tsoory, S.G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841-859. https://doi.org/10.1177/1745691619856350
Link DOI | Link Google Scholar
Shkedi, A. (2004). Second?order theoretical analysis: A method for constructing theoretical explanation. International Journal of Qualitative Studies in Education, 17(5), 627-646. https://doi.org/10.1080/0951839042000253630
Link DOI | Link Google Scholar
Stake, R.E. (2010). Qualitative research: Studying how things work. Guilford Publications. https://bit.ly/3J0mmNf
Link Google Scholar
Vekety, B., Logemann, A., & Takacs, Z.K. (2022). Mindfulness practice with a brain-sensing device improved cognitive functioning of elementary school children: An exploratory pilot study. Brain Sciences, 12(1), 103. https://doi.org/10.3390/brainsci12010103
Link DOI | Link Google Scholar
Williams, N.S., McArthur, G.M., & Badcock, N.A. (2020a). 10 years of EPOC: A scoping review of Emotiv’s portable EEG device. BioRxiv. https://doi.org/10.1101/2020.07.14.202085
Link DOI | Link Google Scholar
Williams, N.S., McArthur, G.M., de-Wit, B., Ibrahim, G., & Badcock, N.A. (2020b). A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ, 8, e9713. https://doi.org/10.7717/peerj.9713
Link DOI | Link Google Scholar
Williamson, B. (2018). Brain data: Scanning, scraping and sculpting the plastic learning brain through neurotechnology. Postdigital Science and Education, 1, 65-86. https://doi.org/10.1007/s42438-018-0008-5
Link DOI | Link Google Scholar
Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational research. Computers in Human Behavior, 81, 340-349. https://doi.org/10.1111/mbe.12314
Link DOI | Link Google Scholar
Xu, K., Torgrimson, S.J., Torres, R., Lenartowicz, A., & Grammer, J.K. (2022). EEG data quality in real?world settings: Examining neural correlates of attention in school?aged children. Mind, Brain, and Education, 16(3), 221-227. https://doi.org.ponton.uva.es/10.1111/mbe.12314
Link DOI | Link Google Scholar
Zerafa, R., Camilleri, T., Falzon, O., & Camilleri, K.P. (2018). A comparison of a broad range of EEG acquisition devices– is there any difference for SSVEP BCIs? Brain-Computer Interfaces, 5(4), 121-131 https://doi.org/10.1080/2326263X.2018.1550710
Link DOI | Link Google Scholar
技术信息
收到: 28-12-2022
修订: 18-01-2023
公认: 23-02-2023
OnlineFirst: 30-05-2023
发布日期: 01-07-2023
文章修改时间: 21 天 | 期刊编号的平均时间修订 76: -6 天
文章接受时间: 57 天 | 期刊编号的平均接受时间 76: 72 天
预印本编辑时间: 140 天 | 期刊编号的平均编辑时间预印 76: 155 天
文章编辑时间: 185 天 | 期刊编号的平均编辑时间 76: 200 天
度量
这篇文章的度量
浏览次数: 53797
对摘要的解读: 52853
PDF下载: 944
的全部指标 76
浏览次数: 460173
对摘要的解读: 449449
PDF下载: 10724
被引用
引述 Web of Science
目前没有引用这个文件
引述 Google Scholar
目前没有引用这个文件