Palavras chave
Nível socioeconômico, Internet, sucesso acadêmico, crianças, matemática, idiomas
Resumo
Neste estudo, pesquisamos os efeitos mediadores do uso da Internet por parte de crianças na relação entre o nível socioeconômico da família e seu sucesso acadêmico, e se os efeitos mediadores variam entre diferentes disciplinas acadêmicas. Usamos os dados do «Chinese Family Panel Study» (CFPS) sobre o nível socioeconômico das famílias das crianças, o uso de Internet por parte dessas crianças e seu rendimento acadêmico. Houve 2686 participantes em 2014 (mulheres=1272), 2330 participantes (mulheres=1069) em 2016 e 2485 participantes (mulheres=1151) em 2018. O status socioeconômico e o uso da Internet foram medidos por meio de um questionário. Os testes padronizados mediram o rendimento acadêmico. Os achados mostraram que o nível socioeconômico da família se relaciona positivamente com o sucesso em matemática, mas não significativamente com as pontuações chinesas. Os resultados indicaram que o uso da Internet não mediava na relação entre o status socioeconômico familiar em 2014 e o rendimento matemático em 2016, enquanto que a frequência de uso da Internet para estudar em 2016 mediava em parte a relação entre e status socioeconômico familiar em 2016 e o rendimento matemático em 2018. Nossos achados propõem que o uso da Internet só pode mediar na relação entre o nível socioeconômico da família e o sucesso em matemática, e os efeitos mediadores se tornam mais fortes com o passar do tempo.
Referências
Anders, Y., Rossbach, H.G., Weinert, S., Ebert, S., Kuger, S., Lehrl, S., & Maurice, J.V. (2012). Home and preschool learning environments and their relations to the development of early numeracy skills. Early Childhood Research Quarterly, 27(2), 231-244. https://doi.org/10.1016/j.ecresq.2011.08.003
Link DOI | Link Google Scholar
Assari, S., Boyce, S., Bazargan, M., & Caldwell, C.H. (2020). Mathematical performance of American youth: Diminished returns of educational attainment of Asian-American parents. Education sciences, 10(2), 32. https://doi.org/10.3390/educsci10020032
Link DOI | Link Google Scholar
Baker, C.E., Kainz, K.L., & Reynolds, E.R. (2018). Family poverty, family processes and children’s preschool achievement: Understanding the unique role of fathers. Journal of Child and Family Studies, 27(4), 1242-1251. https://doi.org/10.1007/s10826-017-0947-6
Link DOI | Link Google Scholar
Bonfadelli, & Heinz. (2002). The Internet and knowledge gaps: A theoretical and empirical investigation. European Journal of Communication. https://doi.org/10.1177/0267323102017001607
Link DOI | Link Google Scholar
Bradley, R.H., & Corwyn, R.F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 21(3), 371-399. https://doi.org/10.1146/annurev.psych.53.100901.135233
Link DOI | Link Google Scholar
Brooks-Gunn, J., & Duncan, G.J. (1997). The effects of poverty on children. The Future of Children, 7(2), 55-71. https://doi.org/10.2307/1602387
Link DOI | Link Google Scholar
Camerini, A.L., Schulz, P.J., & Jeannet, A.M. (2018). The social inequalities of Internet access, its use, and the impact on children's academic performance: Evidence from a longitudinal study in Switzerland. New Media & Society, 20(7), 2489-2508. https://doi.org/10.1177/1461444817725918
Link DOI | Link Google Scholar
Cao, F.L., & Su, L.Y. (2007). Internet addiction among Chinese adolescents: Prevalence and psychological features. Child Care Health & Development, 33(3), 275-281. https://doi.org/10.1111/j.1365-2214.2006.00715.x
Link DOI | Link Google Scholar
Cheng, Y., & Wu, X. (2017). The relationship between SES and reading comprehension in Chinese: A Mediation Model. other, 8. https://doi.org/10.3389/fpsyg.2017.00672
Link DOI | Link Google Scholar
China Internet Network Information Center (Ed.) (2018). 42nd statistical report on the development of Internet in China. http://bit.ly/37Q2fj3
Link Google Scholar
DeFlorio, L., & Beliakoff, A. (2015). Socioeconomic status and preschoolers' mathematical knowledge: The contribution of home activities and parent beliefs. Early Education & Development, 26(3), 319-341. https://doi.org/10.1080/10409289.2015.968239
Link DOI | Link Google Scholar
Dijk, J.V., & Hacker, K. (2003). The digital divide as a complex and dynamic phenomenon. Information Society, 19(4), 315-326. https://doi.org/10.1080/01972240309487
Link DOI | Link Google Scholar
Duncan, G.J., Brooks-Gunn, J., & Klebanov, P.K. (1994). Economic deprivation and early childhood development. Child Dev, 65(2), 296-318. https://doi.org/10.2307/1131385
Link DOI | Link Google Scholar
Fairlie, R.W., & Robinson, J. (2013). Experimental evidence on the effects of home computers on academic achievement among schoolchildren. Social Science Electronic Publishing. https://doi.org/10.3386/w19060
Link DOI | Link Google Scholar
Farooq, M.S., Chaudhry, A.H., Shafiq, M., & Berhanu, G. (2011). Factors affecting students’ quality of academic performance: A case of secondary school level. Journal of Quality and Technology Management, 7(2), 1-14. https://bit.ly/30c1XPz
Link Google Scholar
Fergusson, D.M., Horwood, L.J., & Boden, J.M. (2008). The transmission of social inequality: Examination of the linkages between family socioeconomic status in childhood and educational achievement in young adulthood. Research in Social Stratification & Mobility, 26(3), 277-295. https://doi.org/10.1016/j.rssm.2008.05.001
Link DOI | Link Google Scholar
Ferraro, K.F., Schafer, M.H., & Wilkinson, L.R. (2016). Childhood Disadvantage and health problems in middle and later life: Early imprints on physical health? American Sociological Review, 81(1), 107-133. https://doi.org/10.1177/0003122415619617
Link DOI | Link Google Scholar
Gómez-García, M., Hossein-Mohand, H., Trujillo-Torres, J.M., Hossein-Mohand, H., & Aznar-Díaz, I. (2020). Technological Factors That Influence the Mathematics Performance of Secondary School Students. Mathematics, 8(11), 1935. https://doi.org/10.3390/math8111935
Link DOI | Link Google Scholar
Habriichuk, L., & Tulchak, L. (2017). Foreign language education and Internet? Advantages and disadvantages. https://bit.ly/2NIaHKv
Link Google Scholar
Hargittai, E. (2001). Second-level digital divide: Differences in people's online skills. First Monday, 7(4). https://doi.org/10.5210/fm.v7i4.942
Link DOI | Link Google Scholar
Hu, L.T., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Link DOI | Link Google Scholar
Huang, C. (2018). Social network site use and academic achievement: A meta-analysis. Computers & Education, 119, 76-83. https://doi.org/10.1016/j.compedu.2017.12.010
Link DOI | Link Google Scholar
Hunley, S.A., Evans, J.H., Delgado-Hachey, M., Krise, J., Rich, T., & Schell, C. (2005). adolescent computer use and academic achievement. Adolescence, 40(158), 307-318.
Link Google Scholar
Kim, S.Y., Kim, M.S., Park, B., Kim, J.H., & Choi, H.G. (2017). The associations between Internet use time and school performance among Korean adolescents differ according to the purpose of Internet use. PloS one, 12(4), e0174878. https://doi.org/10.1371/journal.pone.0174878
Link DOI | Link Google Scholar
Kirkorian, H.L., & Anderson, W.D.R. (2008). Media and young children's learning. Future of Children, 18(1), 39-61. https://doi.org/10.1353/foc.0.0002
Link DOI | Link Google Scholar
Kubey, R.W., Lavin, M.J., & Barrows, J.R. (2001). Internet use and collegiate academic performance decrements: Early findings. Journal of Communication, 51(2), 366-382. https://doi.org/10.1111/j.1460-2466.2001.tb02885.x
Link DOI | Link Google Scholar
Liu, A., & Xie, Y. (2015). Influences of monetary and non-monetary family resources on children's development in verbal ability in China. Research in Social Stratification & Mobility, 40, 59-70. https://doi.org/10.1016/j.rssm.2015.02.003
Link DOI | Link Google Scholar
Liu, D., Chung, K.K.H., & Mcbride, C. (2016). The role of SES in Chinese (L1) and English (L2) word reading in Chinese-speaking kindergarteners. Journal of Research in Reading, 39(3), 268-291. https://doi.org/10.1111/1467-9817.12046
Link DOI | Link Google Scholar
Livingstone, S., Mascheroni, G., & Staksrud, E. (2017). European research on children's Internet use: Assessing the past and anticipating the future. New Media & Society, 20(3), 1103-1122. https://doi.org/10.1177/1461444816685930
Link DOI | Link Google Scholar
Marks, G.N., & Pokropek, A. (2019). Family income effects on mathematics achievement: Their relative magnitude and causal pathways. Oxford Review of Education, 45(6), 769-785. https://doi.org/10.1080/03054985.2019.1620717
Link DOI | Link Google Scholar
Mascheroni, G., & Olafsson, K. (2015). The mobile Internet: Access, use, opportunities and divides among European children. New Media & Society, 18(8), 1657-1679. https://doi.org/10.1177/1461444814567986
Link DOI | Link Google Scholar
Meggiolaro, S. (2018). Information and communication technologies use, gender and mathematics achievement: Evidence from Italy. Social Psychology of Education, 21(2), 497-516. https://doi.org/10.1007/s11218-017-9425-7
Link DOI | Link Google Scholar
Mitra, S. (2019). Does collaborative use of the Internet affect reading comprehension in children. Journal of Learning for Development, 6(1), 20-36. https://bit.ly/30bH07e
Link Google Scholar
Muthén, L., & Muthén, B. (2016). Mplus. The comprehensive modelling program for applied researchers: User’s guide, 5.
Link Google Scholar
Norris, P.N. (2001). Digital divide: Civic engagement, information poverty and the internet world-wide. Info, 5(1). https://doi.org/10.1017/CBO9781139164887
Link DOI | Link Google Scholar
Park, A., & Hannum, E. (2001). Do teachers affect learning in developing countries? Evidence from matched student-teacher data from China. In Conference Rethinking Social Science Research on the Developing World in the 21st Century (pp. 1-41). http://bit.ly/3q69Kch
Link Google Scholar
Park, Y. J. (2015). My whole world's in my palm! The second-level divide of teenagers' mobile use and skill. New Media & Society, 17(6), 977-995. https://doi.org/10.1177/1461444813520302
Link DOI | Link Google Scholar
Resta, P. (1992). Organizing education for minorities: enhancing minority access and use of the new information technologies in higher education. Education & Computing, 8(1-2), 119-127. https://doi.org/10.1016/0167-9287(92)80021-3
Link DOI | Link Google Scholar
Scheerder, A., Deursen, A.V., & Dijk, J.V. (2017). Determinants of Internet skills, uses and outcomes. A Systematic review of the second- and third-level digital divide. Telematics and Informatics, 34(8), 1607-1624. https://doi.org/10.1016/j.tele.2017.07.007
Link DOI | Link Google Scholar
Stavropoulos, V., Alexandraki, K., & Motti-Stefanidi, F. (2013). Recognizing Internet addiction: Prevalence and relationship to academic achievement in adolescents enrolled in urban and rural Greek high schools. Journal of Adolescence, 36(3), 565-576. https://doi.org/10.1016/j.adolescence.2013.03.008
Link DOI | Link Google Scholar
Sutton, R.E. (1991). Equity and computers in the schools: A decade of research. Review of Educational Research, 61(4), 475-503. https://doi.org/10.3102/00346543061004475
Link DOI | Link Google Scholar
Vigdor, J.L., Ladd, H.F., & Martinez, E.G. (2014). Scaling the digital divide: Home computer technology and student achievement. In NBER Working Paper (pp. 1-47). https://doi.org/10.3386/w16078
Link DOI | Link Google Scholar
Wang, L., Li, X., & Li, N. (2014). Socio-economic status and mathematics achievement in China: A review. ZDM, 46(7), 1051-1060. https://doi.org/10.1007/s11858-014-0617-8
Link DOI | Link Google Scholar
Xie, Y. (2012). The user’ s guide of the China family panel studies (2010). Institute of Social Science Survey, Peking University.
Link Google Scholar
Zhou, D., Liu, J., & Liu, J. (2020). The effect of problematic Internet use on mathematics achievement: The mediating role of self-efficacy and the moderating role of teacher-student relationships. Children and Youth Services Review, 118, 105372. https://doi.org/10.1016/j.childyouth.2020.105372
Link DOI | Link Google Scholar
Fundref
Technical information
Recebido: 15-12-2020
Revisado: 24-01-2021
Aceite: 15-02-2021
OnlineFirst: 15-04-2021
Data de publicação: 01-07-2021
Tempo de revisão do artigo: 40 dias | Tempo médio de revisão do número 68: 37 dias
Tempo de aceitação do artigo: 62 dias | Tempo médio de aceitação do número 68: 78 dias
Tempo de edição da pré-impressão: 153 dias | Tempo médio de edição pré-impressão do número 68: 169 dias
Tempo de processamento do artigo: 198 dias | Tempo médio de processamento do número 68: 214 dias
Métricas
Métricas deste artigo
Vistas: 32100
Leituras dos resumos: 28274
Descargas em PDF: 3826
Métricas completas do Comunicar 68
Vistas: 368065
Leituras dos resumos: 321801
Descargas em PDF: 46264
Citado por
Citas em Web of Science
Actualmente não há citações a este documento
Citas em Scopus
Actualmente não há citações a este documento