Palabras clave

Análisis de redes, análisis cuantitativo, desinformación, comunidades virtuales, redes sociales, pensamiento crítico

Resumen

Twitter se ha transformado en una de las principales plataformas de participación ciudadana hoy en día. Sin embargo, aun cuando estudios similares previos se han centrado en la opinión sobre las vacunas en general o sobre otras vacunas específicas, hasta la fecha no se han investigado las opiniones hacia las vacunas contra la COVID-19 en Twitter. El objetivo de esta investigación es, mediante el uso de herramientas de análisis de redes sociales y de herramientas de procesamiento del lenguaje, examinar el grado en el que las opiniones e interacciones presentes en Twitter son favorables o no hacia las principales vacunas de la COVID-19. Además, se estudia la relevancia de cada una de las principales vacunas, así como su nivel de controversia (polemicidad). Igualmente, el presente estudio investiga por primera vez la conversación no solo desde el punto de vista del contenido, sino también de los participantes que la integran, analizando en detalle las cuentas verificadas y empleando herramientas para la detección de bots. En términos globales, los resultados muestran una moderada favorabilidad hacia las vacunas de la COVID-19, siendo las más aceptadas las de Oxford-AstraZeneca, Pfizer y Moderna, y la de Sputnik V en el caso concreto de las cuentas verificadas. Por otro lado, la vacuna que más atención acapara es la rusa Sputnik V, que es además la más polémica por detrás de las de origen chino. Por último, los usuarios verificados se muestran como agentes relevantes de la conversación por su mayor capacidad de difusión y alcance, mientras que la presencia de bots es prácticamente inexistente.

Ver infografía

Referencias

Andre, F.E., Booy, R., Bock, H.L., Clemens, J., Datta, S. K., John, T.J., Lee, B.W., Lolekha, S., Peltola, H., Ruff, T.A., Santosham, M., & Schmitt, H.J. (2008). Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World Health Organization, 86(2), 140-146. https://doi.org/10.2471/BLT.07.040089

Link DOI | Link Google Scholar

Auger, G.A. (2013). Fostering democracy through social media: Evaluating diametrically opposed nonprofit advocacy organizations’ use of Facebook, Twitter, and YouTube. Public Relations Review, 39(4), 369-376. https://doi.org/10.1016/j.pubrev.2013.07.013

Link DOI | Link Google Scholar

Bello-Orgaz, G., Hernandez-Castro, J., & Camacho, D. (2017). Detecting discussion communities on vaccination in twitter. Future Generation Computer Systems, 66, 125-136. https://doi.org/10.1016/j.future.2016.06.032

Link DOI | Link Google Scholar

Bertin, P., Nera, K., & Delouvée, S. (2020). Conspiracy beliefs, rejection of vaccination, and support for hydroxychloroquine: A conceptual replication-extension in the COVID-19 pandemic context. Frontiers in psychology, 11, 1-9. https://doi.org/10.3389/fpsyg.2020.565128

Link DOI | Link Google Scholar

Bosch, T. (2017). Twitter activism and youth in South Africa: The case of #RhodesMustFall. Information, Communication & Society, 20(2), 221-232. https://doi.org/10.1080/1369118X.2016.1162829

Link DOI | Link Google Scholar

Botometer (Ed.) (2020). Botometer® by OSoMe. FAQ. https://bit.ly/3bGEPh8

Link Google Scholar

Brand, E., & Gomez, H. (2006). Análisis de redes sociales como metodología de investigación. Elementos básicos y aplicación. Repositorio Institucional Universidad de Antioquia. https://bit.ly/3npVOdi

Link Google Scholar

Broniatowski, D.A., Jamison, A.M., Qi, S., AlKulaib, L., Chen, T., Benton, A., Quinn, S.C., & Dredze, M. (2018). Weaponized health communication: Twitter bots and russian trolls amplify the vaccine debate. American Journal of Public Health, 108(10), 1378-1384. https://doi.org/10.2105/AJPH.2018.304567

Link DOI | Link Google Scholar

Burnap, P., Gibson, R., Sloan, L., Southern, R., & Williams, M. (2016). 140 characters to victory? Using Twitter to predict the UK 2015 general election. Electoral Studies, 41, 230-233. https://doi.org/10.1016/j.electstud.2015.11.017

Link DOI | Link Google Scholar

Callaway, E. (2020). Russia announces positive COVID-vaccine results from controversial trial. Nature. https://doi.org/10.1038/d41586-020-03209-0

Link DOI | Link Google Scholar

Centro de Investigaciones Sociológicas (CIS) (Ed.) (2021). Barómetro de febrero 2021. https://bit.ly/37LyfFj

Link Google Scholar

Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2), 317-332. https://doi.org/10.1111/jcom.12084

Link DOI | Link Google Scholar

Cuesta-Cambra, U., Martínez-Martínez, L., & Niño-González, J.I. (2019). Análisis de la información pro vacunas y anti vacunas en redes sociales e internet. Patrones visuales y emocionales. Profesional de la Información, 28(2), e280217. https://doi.org/10.3145/epi.2019.mar.17

Link DOI | Link Google Scholar

Denia, E. (2020). The impact of science communication on Twitter: The case of Neil deGrasse Tyson. [El impacto del discurso científico en Twitter: El caso de Neil deGrasse Tyson]. Comunicar, 65, 21-30. https://doi.org/10.3916/C65-2020-02

Link DOI | Link Google Scholar

Dixon, G., & Clarke, C. (2013). The effect of falsely balanced reporting of the autism-vaccine controversy on vaccine safety perceptions and behavioral intentions. Health Education Research, 28(2), 352-359. https://doi.org/10.1093/her/cys110

Link DOI | Link Google Scholar

Dror, A.A., Eisenbach, N., Taiber, S., Morozov, N.G., Mizrachi, M., Zigron, A., Srouji, S., & Sela, E. (2020). Vaccine hesitancy: the next challenge in the fight against COVID-19. European Journal of Epidemiology, 35, 775-779. https://doi.org/10.1007/s10654-020-00671-y

Link DOI | Link Google Scholar

Dubé, E., Vivion, M., & MacDonald, N.E. (2015). Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert Review of Vaccines, 14(1), 99-117. https://doi.org/10.1586/14760584.2015.964212

Link DOI | Link Google Scholar

Fauziyyah, A. (2020). Analisis sentimen pandemi Covid19 pada streaming Twitter dengan text mining Python. Jurnal Ilmiah SINUS, 18(2), 31-42. https://doi.org/10.30646/sinus.v18i2.491

Link DOI | Link Google Scholar

Flaherty, D.K. (2011). The vaccine-autism connection: A public health crisis caused by unethical medical practices and fraudulent science. Annals of Pharmacotherapy, 45(10), 1302-1304. https://doi.org/10.1345/aph.1Q318

Link DOI | Link Google Scholar

François, G., Duclos, P., Margolis, H., Lavanchy, D., Siegrist, C.A., Meheus, A., Lambert, P.H., Emiroglu, N., Badur, S., & Van-Damme, P. (2005). Vaccine safety controversies and the future of vaccination programs. The Pediatric Infectious Disease Journal, 24(11), 953-961. https://doi.org/10.1097/01.inf.0000183853.16113.a6

Link DOI | Link Google Scholar

Friedrich, M.J. (2019). WHO’s Top Health Threats for 2019. JAMA, 321(11). https://doi.org/10.1001/jama.2019.1934

Link DOI | Link Google Scholar

Gintova, M. (2019). Understanding government social media users: An analysis of interactions on immigration, refugees and citizenship Canada Twitter and Facebook. Government Information Quarterly, 36(4), 101388. https://doi.org/10.1016/j.giq.2019.06.005

Link DOI | Link Google Scholar

Graells-Garrido, E., Baeza-Yates, R., & Lalmas, M. (2019). How representative is an abortion debate on Twitter? In P. Boldi, B. Foucault-Welles, K, Kinder-Kurlanda, & C. Wilson (Eds.), Proceedings of the 10th ACM Conference on Web Science - WebSci ’19. (pp. 133-134). Association for Computing Machinery https://doi.org/10.1145/3292522.3326057

Link DOI | Link Google Scholar

Hansen, D., Shneiderman, B., & Smith, M.A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Graduate Journal of Social Science. https://doi.org/10.1016/B978-0-12-382229-1.00011-4

Link DOI | Link Google Scholar

Himelboim, I., Xiao, X., Lee, D.K.L., Wang, M.Y., & Borah, P. (2020). A social networks approach to understanding vaccine conversations on Twitter: Network clusters, sentiment, and certainty in HPV social networks. Health Communication, 35(5), 607-615. https://doi.org/10.1080/10410236.2019.1573446

Link DOI | Link Google Scholar

Hornsey, M.J., Harris, E.A., & Fielding, K.S. (2018). The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychology, 37(4), 307-315. https://doi.org/10.1037/hea0000586

Link DOI | Link Google Scholar

Jolley, D., & Douglas, K.M. (2014). The effects of anti-vaccine conspiracy theories on vaccination intentions. PLoS ONE, 9(2), 89177. https://doi.org/10.1371/journal.pone.0089177

Link DOI | Link Google Scholar

Kouzy, R., Abi-Jaoude, J., Kraitem, A., El-Alam, M.B., Karam, B., Adib, E., Zarka, J., Traboulsi, C., Akl, E., & Baddour, K. (2020). Coronavirus goes viral: Quantifying the COVID-19 misinformation epidemic on Twitter. Cureus, 12(3). https://doi.org/10.7759/cureus.7255

Link DOI | Link Google Scholar

López-Rico, C.M., González-Esteban, J.L., & Hernández-Martínez, A. (2020). Consumo de información en redes sociales durante la crisis de la COVID-19 en España. Revista de Comunicación y Salud, 10(2), 461-481. https://doi.org/10.35669/rcys.2020.10(2).461-481

Link DOI | Link Google Scholar

Loria, S. (2020). TextBlob: Simplified text processing (0.16.0). https://bit.ly/3knzFL8

Link Google Scholar

Manfredi-Sánchez, J., Amado-Suárez, A., & Waisbord, S. (2021). Presidential Twitter in the face of COVID-19: Between populism and pop politics. [Twitter presidencial ante la COVID-19: Entre el populismo y la política pop]. Comunicar, 66, 83-94. https://doi.org/10.3916/C66-2021-07

Link DOI | Link Google Scholar

McKnight, P.E., & Najab, J. (2010). Mann?Whitney U Test. In I.B. Weiner, & W.E. Craighead (Eds.), The Corsini Encyclopedia of Psychology. John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0524

Link DOI | Link Google Scholar

Meyer, S.B., Violette, R., Aggarwal, R., Simeoni, M., MacDougall, H., & Waite, N. (2019). Vaccine hesitancy and Web 2.0: Exploring how attitudes and beliefs about influenza vaccination are exchanged in online threaded user comments. Vaccine, 37(13), 1769-1774. https://doi.org/10.1016/j.vaccine.2019.02.028

Link DOI | Link Google Scholar

Micu, A., Micu, A.E., Geru, M., & Lixandroiu, R.C. (2017). Analyzing user sentiment in social media: Implications for online marketing strategy. Psychology & Marketing, 34(12), 1094-1100. https://doi.org/10.1002/mar.21049

Link DOI | Link Google Scholar

Milani, E., Weitkamp, E., & Webb, P. (2020). The visual vaccine debate on Twitter: A social network analysis. Media and Communication, 8(2), 364–375. https://doi.org/10.17645/mac.v8i2.2847

Link DOI | Link Google Scholar

Oliphant, T.E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10-20. https://doi.org/10.1109/MCSE.2007.58

Link DOI | Link Google Scholar

Organización de Naciones Unidas (Ed.) (2020). Covid-19. Impact of the Pandemic on Trade and Development. https://bit.ly/2R4D0Eu

Link Google Scholar

Organización Mundial de la Salud (Ed.) (2020a). Cronología de la respuesta de la OMS a la COVID-19. https://bit.ly/3qV2GA7

Link Google Scholar

Organización Mundial de la Salud (Ed.) (2020b). Draft landscape and tracker of COVID-19 candidate vaccines. https://bit.ly/3snMdF6

Link Google Scholar

Ostertagova, E., Ostertag, O., & Kovác, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115-120. https://doi.org/10.4028/www.scientific.net/AMM.611.115

Link DOI | Link Google Scholar

Poland, G.A., & Spier, R. (2010). Fear, misinformation, and innumerates: How the Wakefield paper, the press, and advocacy groups damaged the public health. Vaccine, 28(12), 2361-2362. https://doi.org/10.1016/j.vaccine.2010.02.052

Link DOI | Link Google Scholar

Puente, S.N., Maceiras, S.D., & Romero, D.F. (2021). Twitter activism and ethical witnessing: Possibilities and challenges of feminist politics against gender-based violence. Social Science Computer Review, 39(2), 295-311. https://doi.org/10.1177/0894439319864898

Link DOI | Link Google Scholar

Puri, N., Coomes, E.A., Haghbayan, H., & Gunaratne, K. (2020). Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Human Vaccines and Immunotherapeutics, 16(11), 1-8. https://doi.org/10.1080/21645515.2020.1780846

Link DOI | Link Google Scholar

Schmidt, A.L., Zollo, F., Scala, A., Betsch, C., & Quattrociocchi, W. (2018). Polarization of the vaccination debate on Facebook. Vaccine, 36(25), 3606-3612. https://doi.org/10.1016/j.vaccine.2018.05.040

Link DOI | Link Google Scholar

Serrano-Contreras, I.J., García-Marín, J., & Luengo, O.G. (2020). Measuring online political dialogue: Does polarization trigger more deliberation? Media and Communication, 8(4), 63-72. https://doi.org/10.17645/mac.v8i4.3149

Link DOI | Link Google Scholar

Spier, R.E. (2001). Perception of risk of vaccine adverse events: A historical perspective. Vaccine, 20(1), 78-84. https://doi.org/10.1016/S0264-410X(01)00306-1

Link DOI | Link Google Scholar

Subrahmanian, V., Azaria, A., Durst, S., Kagan, V., Galstyan, A., Lerman, K., Zhu, L., Ferrara, E., Flammini, A., & Menczer, F. (2016). The DARPA Twitter bot challenge. Computer, 49(6), 38-46. https://doi.org/10.1109/MC.2016.183

Link DOI | Link Google Scholar

Sued-Palmeiro, G.E., & Cebral-Loureda, M. (2020). Voces autorizadas en Twitter durante la pandemia de COVID-19: Actores, léxico y sentimientos como marco interpretativo para usuarios ordinarios. Revista de Comunicación y Salud, 10(2), 549-568. https://doi.org/10.35669/rcys.2020.10(2).549-568

Link DOI | Link Google Scholar

The American Journal of Managed Care (AJMC) (Ed.) (2020). A Timeline of COVID-19 Developments in 2020. https://bit.ly/3xZI7qk

Link Google Scholar

Tomeny, T.S., Vargo, C.J., & El-Toukhy, S. (2017). Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009-15. Social Science and Medicine, 191, 168-175. https://doi.org/10.1016/j.socscimed.2017.08.041

Link DOI | Link Google Scholar

Tornos-Inza, E. (2020). Tasa de interacción (engagement) en Twitter. Related: Marketing. https://bit.ly/3aSs9Vj

Link Google Scholar

Twitter (Ed.) (2021). Acerca de las cuentas verificadas de Twitter. https://bit.ly/3dGRmUF

Link Google Scholar

Vu, H.T., Do, H.V., Seo, H., & Liu, Y. (2020). Who leads the conversation on climate change? A study of a global network of NGOS on Twitter. Environmental Communication, 14(4), 450-464. https://doi.org/10.1080/17524032.2019.1687099

Link DOI | Link Google Scholar

World Economic Forum (Ed.) (2021). More people now plan to get a COVID-19 vaccine than in December. https://bit.ly/3r6cQ1f

Link Google Scholar

Xiong, Y., Cho, M., & Boatwright, B. (2019). Hashtag activism and message frames among social movement organizations: Semantic network analysis and thematic analysis of Twitter during the #MeToo movement. Public Relations Review, 45(1), 10-23. https://doi.org/10.1016/j.pubrev.2018.10.014

Link DOI | Link Google Scholar

Yang, S., Quan-Haase, A., & Rannenberg, K. (2017). The changing public sphere on Twitter: Network structure, elites and topics of the #righttobeforgotten. New Media & Society, 19(12), 1983-2002. https://doi.org/10.1177/1461444816651409

Link DOI | Link Google Scholar

Yelin, D., Wirtheim, E., Vetter, P., Kalil, A.C., Bruchfeld, J., Runold, M., Guaraldi, G., Mussini, C., Gudiol, C., Pujol, M., Bandera, A., Scudeller, L., Paul, M., Kaiser, L., & Leibovici, L. (2020). Long-term consequences of COVID-19: Research needs. The Lancet Infectious Diseases, 20(10), 1115-1117. https://doi.org/10.1016/S1473-3099(20)30701-5

Link DOI | Link Google Scholar

YouGov (Ed.). (2021). COVID-19 Public Monitor. COVID-19 Public Monitor. https://yougov.co.uk/COVID-19

Link Google Scholar

Zimmer, C., Corum, J., & Wee, S.L. (2021, January 11). Coronavirus vaccine tracker. The New York Times. https://nyti.ms/2NCtMxI

Link Google Scholar

Crossmark

Ficha técnica

Recibido: 28-02-2021

Revisado: 12-03-2021

Aceptado: 27-04-2021

OnlineFirst: 15-06-2021

Fecha publicación: 01-10-2021

Tiempo de revisión del artículo : 12 días | Media tiempo revisión número 69: 30 días

Tiempo de aceptación del artículo: 57 días | Media tiempo aceptación número 69: 68 días

Tiempo de edición del preprint: 169 días | Media tiempo edición número preprint 69: 180 días

Tiempo de edición del artículo: 214 días | Media tiempo edición número 69: 225 días

Métricas

Métricas de este artículo

Vistas: 5374

Lectura del abstract: 4074

Descargas del PDF: 1300

Métricas completas de Comunicar 69

Vistas: 48544

Lectura del abstract: 39313

Descargas del PDF: 9231

Citado por

Citas en Web of Science

Actualmente no existen citas hacia este documento

Citas en Scopus

Actualmente no existen citas hacia este documento

Citas en Google Scholar

Actualmente no existen citas hacia este documento

Descarga

Métricas alternativas

Cómo citar

Carrasco-Polaino, R., Martín-Cárdaba, M., & Villar-Cirujano, E. (2021). Citizen participation in Twitter: Anti-vaccine controversies in times of COVID-19. [Participación ciudadana en Twitter: Polémicas anti-vacunas en tiempos de COVID-19]. Comunicar, 69, 21-31. https://doi.org/10.3916/C69-2021-02

Compartir

           

Apartado de Correos 527

21080 Huelva (España)

Administración

Redacción

Creative Commons

Esta web utiliza cookies para obtener datos estadísticos de la navegación de sus usuarios. Si continúas navegando consideramos que aceptas su uso. +info X