Keywords

Social network analysis, Big Data, education, disability, digital inclusion, influence groups

Abstract

Social media can contribute to an inclusive society, but they are also asymmetrical and polarised communication spaces. This requires competent teachers to build critical digital citizenship. The aim of this article is twofold: to present web scraping and text analytics as tools that define teachers' digital competences, and to investigate which posts on Twitter and Instagram are most viral in relation to education, disability and inclusion. A total of 48,991 publications in Spanish and English were analysed, corresponding to the period from 13 October 2021 to 1 May 2022. The 100 most viral posts were selected, and correlations were identified between the sentiment, gender and influence associated with the content, its temporal and geographic space. The results show that economic and political influence groups are the most viral, relegating non-profit organisations or individuals with altruistic outreach to second place; only on international days is this trend reversed. Bots do not interfere to impose messages; it is artificial intelligence algorithms that overshadow vindictive and humanistic content. The most influential people are predominantly male, associated with institutional accounts in the political sphere. It is concluded that Big Data and Business Intelligence tools help teachers to analyse relevant educational and social issues, and to acquire a collective ethic in the face of new educational challenges.

View infography

References

Arcila-Calderón, C., Sánchez-Holgado, P., Quintana-Moreno, C., Amores, J., & Blanco-Herrero, D. (2022). Hate speech and social acceptance of migrants in Europe: Analysis of tweets with geolocation. [Discurso de odio y aceptación social hacia migrantes en Europa: Análisis de tuits con geolocalización]. Comunicar, 71, 21-35. https://doi.org/10.3916/C71-2022-02

Link DOI | Link Google Scholar

Awidi, I.T., Paynter, M., & Vujosevic, T. (2019). Facebook group in the learning design of a higher education course: An analysis of factors influencing positive learning experience for students. Computers & Education, 129, 106-121. https://doi.org/10.1016/j.compedu.2018.10.018

Link DOI | Link Google Scholar

Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using twitter data. Political Analysis, 23(1), 76-91. https://doi.org/10.1093/pan/mpu011

Link DOI | Link Google Scholar

Barberá, P., Jost J.T., Nagler, J., Tucker J.A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber? Psychological Science, 26(10), 1531-1542. https://doi.org/10.1177/0956797615594620

Link DOI | Link Google Scholar

Bautista, A. (2021). Functional resignification and technological innovation as a digital teaching competence. IEEE. Revista Iberoamericana de Tecnologías del Aprendizaje, 16(1), 93-99. https://doi.org/10.1109/RITA.2021.3052679

Link DOI | Link Google Scholar

Becker, L.T., & Gould, E.M. (2019). Microsoft power BI: Extending excel to manipulate, analyze, and visualize diverse data. Serials Review, 45(3), 184-188. https://doi.org/10.1080/00987913.2019.1644891

Link DOI | Link Google Scholar

Brady, W.J., Wills, J.A., Burkart, D., Jost, J.T., & Van-Bavel, J.J. (2019). An ideological asymmetry in the diffusion of moralized content on social media among political leaders. Journal of Experimental Psychology: General, 148(10), 1802–1813. https://doi.org/10.1037/xge0000532

Link DOI | Link Google Scholar

Brunner, M., Palmer, S., Togher, L., & Hemsley, B. (2019). 'I kind of figured it out': The views and experiences of people with traumatic brain injury in using social media-self-determination for participation and inclusion online. International Journal Language & Communication Disorders, 54(2), 221-233. https://doi.org/10.1111/1460-6984.12405

Link DOI | Link Google Scholar

Carlsson (Ed.) (2019). Understanding media and information literacy (MIL) in the digital age. A question of democracy. University of Gothenburg. https://bit.ly/3xWsCz2

Link Google Scholar

Cheng, L.C., & Tsai, S.L. (2019). Deep learning for automated sentiment analysis of social media. In F. Spezzano, W. Chen, & X. Xiao (Eds.), Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 1001-1004). Association for Computing Machinery. https://doi.org/10.1145/3341161.3344821

Link DOI | Link Google Scholar

De-Groot, R., Kaal, L.H., & Wouter, Ph.S. (2022). The online lives of adolescents with mild or borderline intellectual disabilities in the Netherlands: Care staff knowledge and perceptions. Journal of Intellectual & Developmental Disability. https://doi.org/10.3109/13668250.2021.2004635

Link DOI | Link Google Scholar

Del-Fresno-García, M. (2014). Haciendo visible lo invisible: Visualización de la estructura de las relaciones en red en Twitter por medio del análisis de redes sociales. Profesional de la Información, 23(3), 246-252. https://doi.org/10.3145/epi.2014.may.04

Link DOI | Link Google Scholar

Del-Fresno-García, M. (2019). Desórdenes informativos: sobreexpuestos e infrainformados en la era de la posverdad. Profesional de la Información, 28(3), 1-11. https://doi.org/10.3145/epi.2019.may.02

Link DOI | Link Google Scholar

Dellwing, M. (2021). The continuities of Twitter strategies and algorithmic terror. Society for the study of symbolic interaction. Sage. https://doi.org/10.1002/symb.585

Link DOI | Link Google Scholar

Ditrendia (Ed.) (2020, July 9). Mobile en España y en el Mundo. Ditrendia Digital Marketing Trends. https://bit.ly/3MNim3j

Link Google Scholar

Grace, E., Raghavendra, P., McMillan, J., & Gunson, J. (2019). Exploring participation experiences of youth who use AAC in social media settings: Impact of an e-mentoring intervention. Augmentative and Alternative Communication, 35(2), 132-141. https://doi.org/10.1080/07434618.2018.1557250

Link DOI | Link Google Scholar

Hemsley, B., Dann, D., Palmer, S., Allan, M., & Balandin. S. (2018). Using Twitter to access the human right of communication for people who use Augmentative and Alternative Communication. International Journal of Speech-Language Pathology, 20(1) 50-58. https://doi.org/10.1080/17549507.2017.1413137

Link DOI | Link Google Scholar

Ladogina, A., Samoylenko, I., Golovina, V., Razina, N., & Petushkova, E. (2020). Communication effectiveness in social networks of leading universities. Diálogo, 43, 35-50. https://doi.org/10.18316/dialogo.v0i43.6497

Link DOI | Link Google Scholar

Liu, B. (2010). Sentiment analysis and subjectivity. In N. Indurkhya, & F.J. Damerau (Eds.), Handbook of Natural Language Processing. Chapman and Hall/CRC. https://doi.org/10.1201/9781420085938

Link DOI | Link Google Scholar

Mitchell, R. (2018). Web scraping with Python: Collecting more data from the modern web. O'Reilly Media, Inc. https://bit.ly/3zw5nOn

Link Google Scholar

Ortega-Sánchez, D., Blanch, J.P., Quintana, J.I., Cal, E., Fuente-Anuncibay, C., & Hate, R. (2021). Speech, Emotions, and Gender Identities: A Study of Social Narratives on Twitter with Trainee Teachers. International Journal of Environmental Research and Public Health, 18(8), 4055. https://doi.org/10.3390/ijerph18084055

Link DOI | Link Google Scholar

Robles, J., Guevara, J., Casas-Mas, B., & Gómez, D. (2022). When negativity is the fuel. Bots and Political Polarization in the COVID-19 debate. [Cuando la negatividad es el combustible. Bots y polarización política en el debate sobre el COVID-19]. Comunicar, 71, 63-75. https://doi.org/10.3916/C71-2022-05

Link DOI | Link Google Scholar

Tuzel, S., & Hobbs, R. (2017). The use of social media and popular culture to advance cross-cultural understanding. [El uso de las redes sociales y la cultura popular para una mejor comprensión intercultural]. Comunicar, 51, 63-72. https://doi.org/10.3916/C51-2017-06

Link DOI | Link Google Scholar

We are social (Ed.) (2021). Digital 2021. The latest insights into the ‘state of digital’. We Are Social Ltd. https://bit.ly/3POIhJV

Link Google Scholar

White, P., & Forrester-Jones, R. (2020). Valuing e-inclusion: Social media and the social networks of adolescents with intellectual disability. Journal of Intellectual Disabilities, 24(3), 381-397. https://doi.org/10.1177/1744629518821240

Link DOI | Link Google Scholar

Crossmark

Technical information

Received: 29-05-2022

Revised: 21-06-2022

Accepted: 13-07-2022

OnlineFirst: 30-10-2022

Publication date: 01-01-2023

Article revision time: 23 days | Average time revision issue 74: 40 days

Article acceptance time: 45 days | Average time of acceptance issue 74: 69 days

Preprint editing time: 172 days | Average editing time preprint issue 74: 194 days

Article editing time: 217 days | Average editing time issue 74: 239 days

Metrics

Metrics of this article

Views: 2812

Abstract readings: 2356

PDF downloads: 456

Full metrics of Comunicar 74

Views: 26531

Abstract readings: 22093

PDF downloads: 4438

Cited by

Cites in Web of Science

Currently there are no citations to this document

Cites in Scopus

Currently there are no citations to this document

Cites in Google Scholar

Currently there are no citations to this document

Download

Alternative metrics

How to cite

Barroso-Moreno, C., Rayon-Rumayor, L., & Bautista García-Vera, A. (2023). Big Data and Business Intelligence on Twitter and Instagram for digital inclusion. [Big Data y Business Intelligence en Twitter e Instagram para la inclusión digital]. Comunicar, 74, 49-60. https://doi.org/10.3916/C74-2023-04

Share

           

Post Office Box 527

21080 Huelva (Spain)

Administration

Editorial office

Creative Commons

This website uses cookies to obtain statistical data on the navigation of its users. If you continue to browse we consider that you accept its use. +info X