Palavras chave

Inteligência artificial, educação, contemporaneidade, e-learning, ensino online, aprendizagem profunda

Resumo

O termo "Inteligência Artificial" foi cunhado em 1956 em uma conferência no Dartmouth College e, desde então, tem sofrido constante desenvolvimento e evoluiu radicalmente. Pioneiros proeminentes do termo incluem John McCarthy, Marvin Minsky, Allen Newell e Herbert A. Simon. A aplicação da IA na educação em todo o mundo aumentou dramaticamente com sua importância crescendo a uma taxa crescente. O objetivo desta pesquisa é analisar bibliometricamente as aplicações da IA na educação contemporânea. A metodologia inclui um prisma dos artigos de três bases de dados fundamentais: Scopus (n=390), Mendeley (n=113) e Science Direct (n=3.594). Um total de n=4.097 artigos em inglês e espanhol foram analisados. A revisão sistemática da literatura de trabalhos recentes empregou uma abordagem mista usando métodos quantitativos e qualitativos. Foi inferido pelos autores que a IA está revolucionando a educação ao oferecer soluções personalizadas e eficientes para melhorar o aprendizado dos alunos. Uma das principais conclusões desta pesquisa é que, na educação contemporânea, os alunos são um dos grupos mais afetados pela IA. Além disso, a inteligência humana dos professores desempenha um papel fundamental, pois eles adaptam suas metodologias para alavancar as novas tecnologias. Por fim, vale ressaltar que as decisões tomadas nas escolas e universidades dão suporte a novos modelos educacionais baseados em tecnologia.

Ver infografia

Referências

Ahmed, A., Aziz, S., Qidwai, U., Farooq, F., Shan, J., Subramanian, M., Chouchane, L., EINatour, R., Abd-Alrazaq, A., Pandas, S., & Sheikh, J. (2022). Wearable artificial intelligence for assessing physical activity in high school children. Sustainability, 15(1), 638. https://doi.org/10.3390/su15010638

Link DOI | Link Google Scholar

Alhumaid, K., Naqbi, S.A., Elsori, D., & Mansoori, M.A. (2023). The adoption of artificial intelligence applications in education. International Journal of Data and Network Science, 7(1), 457-466. https://doi.org/10.5267/j.ijdns.2022.8.013

Link DOI | Link Google Scholar

Allaoua-Chelloug, S., Ashfaq, H., Alsuhibany, S., Shorfuzzaman, M., Alsufyani, A., Jalal, A., & Park, J. (2023). Real objects understanding using 3D haptic virtual reality for e-learning education. Computers, Materials & Continua, 74(1), 1607-1624. https://doi.org/10.32604/cmc.2023.032245

Link DOI | Link Google Scholar

Aloisi, C. (2023). The future of standardised assessment: Validity and trust in algorithms for assessment and scoring. European Journal of Education, 58(1), 98-110. https://doi.org/10.1111/ejed.12542

Link DOI | Link Google Scholar

Arbelaez-Ossa, L., Rost, M., Lorenzini, G., Shaw, D.M., & Elger, B.S. (2023). A smarter perspective: Learning with and from AI-cases. Artificial Intelligence in Medicine, 135, 102458. https://doi.org/10.1016/j.artmed.2022.102458

Link DOI | Link Google Scholar

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Link DOI | Link Google Scholar

Bañeres, D., Rodríguez-González, M.E., Guerrero-Roldán, A.E., & Cortadas, P. (2023). An early warning system to identify and intervene online dropout learners. International Journal of Educational Technology in Higher Education, 20(1), 1-25. https://doi.org/10.1186/s41239-022-00371-5

Link DOI | Link Google Scholar

Cerqueira, J.M., Cleto, B., Moura, J.M., Sylla, C., & Ferreira, L. (2023). Potentiating learning through augmented reality and serious games. In A.Y.C. Nee & S.K. Ong (eds), Springer Handbook of Augmented Reality (pp. 369-390). Springer. https://doi.org/10.1007/978-3-030-67822-7_15

Link DOI | Link Google Scholar

Chai, C.S., Chiu, T.K.F., Wang, X., Jiang, F., & Lin, X.F. (2023). Modeling Chinese Secondary School students’ behavioral intentions to learn artificial intelligence with the theory of planned behavior and self-determination theory. Sustainability, 15(1), 605. https://doi.org/10.3390/su15010605

Link DOI | Link Google Scholar

Dabbous, A., & Boustani, N.M. (2023). Digital explosion and entrepreneurship education: Impact on promoting entrepreneurial intention for business students. Journal of Risk and Financial Management, 16(1), 27-48. https://doi.org/10.3390/jrfm16010027

Link DOI | Link Google Scholar

Dong, Y. (2022). Application of artificial intelligence software based on semantic web technology in english learning and teaching. Journal of Internet Technology, 23(1), 143-152. https://doi.org/10.53106/160792642022012301015

Link DOI | Link Google Scholar

Ednie, G., Kapoor, T., Koppel, O., Piczak, M.L., Reid, J.L., Murdoch, A.D., Cook, C.N., Sutherland, W.J., & Cooke, S.J. (2022). Foresight science in conservation: Tools, barriers, and mainstreaming opportunities. Ambio, 52(2), 411-424. https://doi.org/10.1007/s13280-022-01786-0

Link DOI | Link Google Scholar

Flores-Vivar, J., & García-Peñalvo, F. (2023). Reflexiones sobre la ética, potencialidades y desafíos de la inteligencia artificial en el marco de una educación de calidad (ODS4). [Reflexiones sobre la ética, potencialidades y desafíos de la IA en el marco de la Educación de Calidad (ODS4)]. Comunicar, 74, 37-47. https://doi.org/10.3916/C74-2023-03

Link DOI | Link Google Scholar

García-Orosa, B., Canavilhas, J., & Vázquez-Herrero, J. (2023). Algorithms and communication: A systematized literature review. [Algoritmos y comunicación: Revisión sistematizada de la literatura]. Comunicar, 74, 9-21. https://doi.org/10.3916/C74-2023-01

Link DOI | Link Google Scholar

Hinojo-Lucena, F., Aznar-Díaz, I., Cáceres-Reche, M., & Romero-Rodríguez, J. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), 51-60. https://doi.org/10.3390/educsci9010051

Link DOI | Link Google Scholar

Ho, M., Le, N., Mantello, P., Ho, M., & Ghotbi, N. (2023). Understanding the acceptance of emotional artificial intelligence in japanese healthcare system: A cross-sectional survey of clinic visitors’ attitude. Technology in Society, 72, 102-166. https://doi.org/10.1016/j.techsoc.2022.102166

Link DOI | Link Google Scholar

Hort, M., Moussa, R., & Sarro, F. (2023). Multi-objective search for gender-fair and semantically correct word embeddings. Applied Soft Computing, 133, 109916. https://doi.org/10.1016/j.asoc.2022.109916

Link DOI | Link Google Scholar

Hu, Y., Fu, J.S., & Yeh, H. (2023). Developing an early-warning system through robotic process automation: Are intelligent tutoring robots as effective as human teachers? Interactive Learning Environments, 1-14. https://doi.org/10.1080/10494820.2022.2160467

Link DOI | Link Google Scholar

Hua-Hu, K. (2023). An exploration of the key determinants for the application of AI-enabled higher education based on a hybrid soft-computing technique and a DEMATEL approach. Expert Systems with Applications, 212, 118-762. https://doi.org/10.1016/j.eswa.2022.118762

Link DOI | Link Google Scholar

Huang, A.Y.Q., Lu, O.H.T., & Yang, S.J.H. (2023). Effects of artificial Intelligence–enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers and Education, 194, 104684. https://doi.org/10.1016/j.compedu.2022.104684

Link DOI | Link Google Scholar

Hussain, A. (2023). Use of artificial intelligence in the library services: prospects and challenges. Library Hi Tech News, 40(2), 15-17. https://doi.org/10.1108/LHTN-11-2022-0125

Link DOI | Link Google Scholar

Kaur, D., Uslu, S., Rittichier, K.J., & Durresi, A. (2022). Trustworthy artificial intelligence: A review. ACM Computing Surveys, 55(2), 1-38. https://doi.org/10.1145/3491209

Link DOI | Link Google Scholar

King, M.R., & chatGPT. (2023). A conversation on artificial intelligence, chatbots, and plagiarism in higher education. Cellular and Molecular Bioengineering, 16(1), 1-2. https://doi.org/10.1007/s12195-022-00754-8

Link DOI | Link Google Scholar

Lahza, H., Khosravi, H., & Demartini, G. (2023). Analytics of learning tactics and strategies in an online learnersourcing environment. Journal of Computer Assisted Learning, 39(1), 94-112. https://doi.org/10.1111/jcal.12729

Link DOI | Link Google Scholar

Li, C., Zheng, P., Yin, Y., Wang, B., & Wang, L. (2023). Deep reinforcement learning in smart manufacturing: A review and prospects. CIRP Journal of Manufacturing Science and Technology, 40, 75-101. https://doi.org/10.1016/j.cirpj.2022.11.003

Link DOI | Link Google Scholar

Matthew, J., Pagea, J.E., McKenziea, P.M., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuiness, L.A., … Moher, D. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Link DOI | Link Google Scholar

Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education, 20(1), 4. https://doi.org/10.1186/s41239-022-00372-4

Link DOI | Link Google Scholar

Picciano, A.G. (2019). Artificial intelligence and the academy’s loss of purpose. Online Learning Journal, 23(3), 270-284. https://doi.org/10.24059/olj.v23i3.2023

Link DOI | Link Google Scholar

Sayed, B.T., Madanan, M., & Biju, N. (2023). An efficient artificial intelligence-based educational data mining approach for higher education and early recognition system. SN Computer Science, 4(2), 130. https://doi.org/10.1007/s42979-022-01562-7

Link DOI | Link Google Scholar

Shen, C., & Tan, Y. (2023). Effect evaluation model of computer aided physical education teaching and training based on artificial intelligence. Computer-Aided Design and Applications, 20(S5), 106-115. https://doi.org/10.14733/cadaps.2023.S5.106-115

Link DOI | Link Google Scholar

Sun, F., & Ye, R. (2023). Moral considerations of artificial intelligence. Science and Education, 32(1), 1-17. https://doi.org/10.1007/s11191-021-00282-3

Link DOI | Link Google Scholar

Tongkachok, K., Ali, B.M., Ganguly, M., Kumar, S., Malathi, M., & Subramanian, M. (2023). A detailed exploration of artificial intelligence and digital education and its sustainable impact on the youth of society. In S. Yadav., A. Haleem, P.K. Arora., & H. Kumar, H. (eds), Proceedings of Second International Conference in Mechanical and Energy Technology (pp. 139-146). Springer. https://doi.org/10.1007/978-981-19-0108-9_15

Link DOI | Link Google Scholar

Ursani, Z., & Ursani, A.A. (2023). The theory of probabilistic hierarchical learning for classification. Annals of Emerging Technologies in Computing, 7(1), 61-74. https://doi.org/10.33166/AETiC.2023.01.005

Link DOI | Link Google Scholar

Vila, E.M.S., & Penín, M.L. (2007). Introduction to special issue AI techniches applied in education. Inteligencia Artificial, 11(33), 7-12. https://doi.org/10.4114/ia.v11i33.914 

Link DOI | Link Google Scholar

Wang, X., Liu, Q., Pang, H., Tan, S.C., Lei, J., Wallace, M.P., & Li, L. (2023). What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers and Education, 194, 104703. https://doi.org/10.1016/j.compedu.2022.104703

Link DOI | Link Google Scholar

Zhen, R., Song, W., He, Q., Cao, J., Shi, L., & Luo, J. (2023). Human-computer interaction system: A survey of talking-head generation. Electronics, 12(1), 218-239. https://doi.org/10.3390/electronics12010218

Link DOI | Link Google Scholar

Zhou, W. (2023). The development system of local music teaching materials based on deep learning. Optik, 273, 170421. https://doi.org/10.1016/j.ijleo.2022.170421

Link DOI | Link Google Scholar

Fundref

Crossmark

Technical information

Recebido: 09-02-2023

Revisado: 25-03-2023

Aceite: 02-05-2023

OnlineFirst: 30-06-2023

Data de publicação: 01-10-2023

Tempo de revisão do artigo: 44 dias | Tempo médio de revisão do número 77: 31 dias

Tempo de aceitação do artigo: 81 dias | Tempo médio de aceitação do número 77: 75 dias

Tempo de edição da pré-impressão: 188 dias | Tempo médio de edição pré-impressão do número 77: 182 dias

Tempo de processamento do artigo: 233 dias | Tempo médio de processamento do número 77: 227 dias

Métricas

Métricas deste artigo

Vistas: 47674

Leituras dos resumos: 45483

Descargas em PDF: 2191

Métricas completas do Comunicar 77

Vistas: 459312

Leituras dos resumos: 446332

Descargas em PDF: 12980

Citado por

Citas em Web of Science

Actualmente não há citações a este documento

Citas em Scopus

Actualmente não há citações a este documento

Citas em Google Scholar

Incidencias de la inteligencia artificial en la educación MAT De La Cruz, EMM Benites, CGC Cachinelli… - RECIMUNDO, 2023 - recimundo.com

https://recimundo.com/index.php/es/article/view/2045

Baixar

Métricas alternativas

Como citar

Sanabria-Navarro, J., Silveira-Pérez, Y., Pérez-Bravo, D., & de-Jesús-Cortina-Núñez, M. (2023). Incidences of artificial intelligence in contemporary education. [Incidencias de la inteligencia artificial en la educación contemporánea]. Comunicar, 77, 97-107. https://doi.org/10.3916/C77-2023-08

Compartilhar

           

Oxbridge Publishing House

4 White House Way

B91 1SE Sollihul United Kingdom

Administração

Redação

Creative Commons

Este site usa cookies para obter dados estatísticos sobre a navegação de seus usuários. Se você continuar navegando, consideramos que você aceita seu uso. +info X