Keywords

Network analysis, quantitative analysis, misinformation, virtual communities, social media, critical thinking

Abstract

Twitter has transformed into one of the main platforms for citizen engagement today. However, even though previous studies have focused on opinions about vaccines in general or about specific vaccines, opinions towards COVID-19 vaccines on Twitter have not been researched to date. The objective of this research is, by using social network analysis and language processing tools, to examine the degree to which the opinions and interactions present on Twitter are favorable or unfavorable towards the main COVID-19 vaccines. In addition, the relevance of each of the vaccines is studied, as well as their level of controversy. Likewise, the present study investigates, for the first time, the conversation from different perspectives including the content and also the participants, by analyzing in detail the verified accounts and using tools for the detection of bots. In global terms, the results from verified accounts show a moderate favorability towards the COVID-19 vaccines, the most accepted being those of Oxford-AstraZeneca, Pfizer, Moderna, and Sputnik V. On the other hand, the vaccine that attracts the most attention is the Russian Sputnik V, which is also the most controversial, behind those developed in China. Finally, verified users are shown to be relevant agents in the conversation due to their greater capacity for dissemination and reach, while the presence of bots is practically non-existent.

View infography

References

Andre, F.E., Booy, R., Bock, H.L., Clemens, J., Datta, S. K., John, T.J., Lee, B.W., Lolekha, S., Peltola, H., Ruff, T.A., Santosham, M., & Schmitt, H.J. (2008). Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World Health Organization, 86(2), 140-146. https://doi.org/10.2471/BLT.07.040089

Link DOI | Link Google Scholar

Auger, G.A. (2013). Fostering democracy through social media: Evaluating diametrically opposed nonprofit advocacy organizations’ use of Facebook, Twitter, and YouTube. Public Relations Review, 39(4), 369-376. https://doi.org/10.1016/j.pubrev.2013.07.013

Link DOI | Link Google Scholar

Bello-Orgaz, G., Hernandez-Castro, J., & Camacho, D. (2017). Detecting discussion communities on vaccination in twitter. Future Generation Computer Systems, 66, 125-136. https://doi.org/10.1016/j.future.2016.06.032

Link DOI | Link Google Scholar

Bertin, P., Nera, K., & Delouvée, S. (2020). Conspiracy beliefs, rejection of vaccination, and support for hydroxychloroquine: A conceptual replication-extension in the COVID-19 pandemic context. Frontiers in psychology, 11, 1-9. https://doi.org/10.3389/fpsyg.2020.565128

Link DOI | Link Google Scholar

Bosch, T. (2017). Twitter activism and youth in South Africa: The case of #RhodesMustFall. Information, Communication & Society, 20(2), 221-232. https://doi.org/10.1080/1369118X.2016.1162829

Link DOI | Link Google Scholar

Botometer (Ed.) (2020). Botometer® by OSoMe. FAQ. https://bit.ly/3bGEPh8

Link Google Scholar

Brand, E., & Gomez, H. (2006). Análisis de redes sociales como metodología de investigación. Elementos básicos y aplicación. Repositorio Institucional Universidad de Antioquia. https://bit.ly/3npVOdi

Link Google Scholar

Broniatowski, D.A., Jamison, A.M., Qi, S., AlKulaib, L., Chen, T., Benton, A., Quinn, S.C., & Dredze, M. (2018). Weaponized health communication: Twitter bots and russian trolls amplify the vaccine debate. American Journal of Public Health, 108(10), 1378-1384. https://doi.org/10.2105/AJPH.2018.304567

Link DOI | Link Google Scholar

Burnap, P., Gibson, R., Sloan, L., Southern, R., & Williams, M. (2016). 140 characters to victory? Using Twitter to predict the UK 2015 general election. Electoral Studies, 41, 230-233. https://doi.org/10.1016/j.electstud.2015.11.017

Link DOI | Link Google Scholar

Callaway, E. (2020). Russia announces positive COVID-vaccine results from controversial trial. Nature. https://doi.org/10.1038/d41586-020-03209-0

Link DOI | Link Google Scholar

Centro de Investigaciones Sociológicas (CIS) (Ed.) (2021). Barómetro de febrero 2021. https://bit.ly/37LyfFj

Link Google Scholar

Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2), 317-332. https://doi.org/10.1111/jcom.12084

Link DOI | Link Google Scholar

Cuesta-Cambra, U., Martínez-Martínez, L., & Niño-González, J.I. (2019). Análisis de la información pro vacunas y anti vacunas en redes sociales e internet. Patrones visuales y emocionales. Profesional de la Información, 28(2), e280217. https://doi.org/10.3145/epi.2019.mar.17

Link DOI | Link Google Scholar

Denia, E. (2020). The impact of science communication on Twitter: The case of Neil deGrasse Tyson. [El impacto del discurso científico en Twitter: El caso de Neil deGrasse Tyson]. Comunicar, 65, 21-30. https://doi.org/10.3916/C65-2020-02

Link DOI | Link Google Scholar

Dixon, G., & Clarke, C. (2013). The effect of falsely balanced reporting of the autism-vaccine controversy on vaccine safety perceptions and behavioral intentions. Health Education Research, 28(2), 352-359. https://doi.org/10.1093/her/cys110

Link DOI | Link Google Scholar

Dror, A.A., Eisenbach, N., Taiber, S., Morozov, N.G., Mizrachi, M., Zigron, A., Srouji, S., & Sela, E. (2020). Vaccine hesitancy: the next challenge in the fight against COVID-19. European Journal of Epidemiology, 35, 775-779. https://doi.org/10.1007/s10654-020-00671-y

Link DOI | Link Google Scholar

Dubé, E., Vivion, M., & MacDonald, N.E. (2015). Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert Review of Vaccines, 14(1), 99-117. https://doi.org/10.1586/14760584.2015.964212

Link DOI | Link Google Scholar

Fauziyyah, A. (2020). Analisis sentimen pandemi Covid19 pada streaming Twitter dengan text mining Python. Jurnal Ilmiah SINUS, 18(2), 31-42. https://doi.org/10.30646/sinus.v18i2.491

Link DOI | Link Google Scholar

Flaherty, D.K. (2011). The vaccine-autism connection: A public health crisis caused by unethical medical practices and fraudulent science. Annals of Pharmacotherapy, 45(10), 1302-1304. https://doi.org/10.1345/aph.1Q318

Link DOI | Link Google Scholar

François, G., Duclos, P., Margolis, H., Lavanchy, D., Siegrist, C.A., Meheus, A., Lambert, P.H., Emiroglu, N., Badur, S., & Van-Damme, P. (2005). Vaccine safety controversies and the future of vaccination programs. The Pediatric Infectious Disease Journal, 24(11), 953-961. https://doi.org/10.1097/01.inf.0000183853.16113.a6

Link DOI | Link Google Scholar

Friedrich, M.J. (2019). WHO’s Top Health Threats for 2019. JAMA, 321(11). https://doi.org/10.1001/jama.2019.1934

Link DOI | Link Google Scholar

Gintova, M. (2019). Understanding government social media users: An analysis of interactions on immigration, refugees and citizenship Canada Twitter and Facebook. Government Information Quarterly, 36(4), 101388. https://doi.org/10.1016/j.giq.2019.06.005

Link DOI | Link Google Scholar

Graells-Garrido, E., Baeza-Yates, R., & Lalmas, M. (2019). How representative is an abortion debate on Twitter? In P. Boldi, B. Foucault-Welles, K, Kinder-Kurlanda, & C. Wilson (Eds.), Proceedings of the 10th ACM Conference on Web Science - WebSci ’19. (pp. 133-134). Association for Computing Machinery https://doi.org/10.1145/3292522.3326057

Link DOI | Link Google Scholar

Hansen, D., Shneiderman, B., & Smith, M.A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Graduate Journal of Social Science. https://doi.org/10.1016/B978-0-12-382229-1.00011-4

Link DOI | Link Google Scholar

Himelboim, I., Xiao, X., Lee, D.K.L., Wang, M.Y., & Borah, P. (2020). A social networks approach to understanding vaccine conversations on Twitter: Network clusters, sentiment, and certainty in HPV social networks. Health Communication, 35(5), 607-615. https://doi.org/10.1080/10410236.2019.1573446

Link DOI | Link Google Scholar

Hornsey, M.J., Harris, E.A., & Fielding, K.S. (2018). The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychology, 37(4), 307-315. https://doi.org/10.1037/hea0000586

Link DOI | Link Google Scholar

Jolley, D., & Douglas, K.M. (2014). The effects of anti-vaccine conspiracy theories on vaccination intentions. PLoS ONE, 9(2), 89177. https://doi.org/10.1371/journal.pone.0089177

Link DOI | Link Google Scholar

Kouzy, R., Abi-Jaoude, J., Kraitem, A., El-Alam, M.B., Karam, B., Adib, E., Zarka, J., Traboulsi, C., Akl, E., & Baddour, K. (2020). Coronavirus goes viral: Quantifying the COVID-19 misinformation epidemic on Twitter. Cureus, 12(3). https://doi.org/10.7759/cureus.7255

Link DOI | Link Google Scholar

López-Rico, C.M., González-Esteban, J.L., & Hernández-Martínez, A. (2020). Consumo de información en redes sociales durante la crisis de la COVID-19 en España. Revista de Comunicación y Salud, 10(2), 461-481. https://doi.org/10.35669/rcys.2020.10(2).461-481

Link DOI | Link Google Scholar

Loria, S. (2020). TextBlob: Simplified text processing (0.16.0). https://bit.ly/3knzFL8

Link Google Scholar

Manfredi-Sánchez, J., Amado-Suárez, A., & Waisbord, S. (2021). Presidential Twitter in the face of COVID-19: Between populism and pop politics. [Twitter presidencial ante la COVID-19: Entre el populismo y la política pop]. Comunicar, 66, 83-94. https://doi.org/10.3916/C66-2021-07

Link DOI | Link Google Scholar

McKnight, P.E., & Najab, J. (2010). Mann?Whitney U Test. In I.B. Weiner, & W.E. Craighead (Eds.), The Corsini Encyclopedia of Psychology. John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0524

Link DOI | Link Google Scholar

Meyer, S.B., Violette, R., Aggarwal, R., Simeoni, M., MacDougall, H., & Waite, N. (2019). Vaccine hesitancy and Web 2.0: Exploring how attitudes and beliefs about influenza vaccination are exchanged in online threaded user comments. Vaccine, 37(13), 1769-1774. https://doi.org/10.1016/j.vaccine.2019.02.028

Link DOI | Link Google Scholar

Micu, A., Micu, A.E., Geru, M., & Lixandroiu, R.C. (2017). Analyzing user sentiment in social media: Implications for online marketing strategy. Psychology & Marketing, 34(12), 1094-1100. https://doi.org/10.1002/mar.21049

Link DOI | Link Google Scholar

Milani, E., Weitkamp, E., & Webb, P. (2020). The visual vaccine debate on Twitter: A social network analysis. Media and Communication, 8(2), 364–375. https://doi.org/10.17645/mac.v8i2.2847

Link DOI | Link Google Scholar

Oliphant, T.E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10-20. https://doi.org/10.1109/MCSE.2007.58

Link DOI | Link Google Scholar

Organización de Naciones Unidas (Ed.) (2020). Covid-19. Impact of the Pandemic on Trade and Development. https://bit.ly/2R4D0Eu

Link Google Scholar

Organización Mundial de la Salud (Ed.) (2020a). Cronología de la respuesta de la OMS a la COVID-19. https://bit.ly/3qV2GA7

Link Google Scholar

Organización Mundial de la Salud (Ed.) (2020b). Draft landscape and tracker of COVID-19 candidate vaccines. https://bit.ly/3snMdF6

Link Google Scholar

Ostertagova, E., Ostertag, O., & Kovác, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115-120. https://doi.org/10.4028/www.scientific.net/AMM.611.115

Link DOI | Link Google Scholar

Poland, G.A., & Spier, R. (2010). Fear, misinformation, and innumerates: How the Wakefield paper, the press, and advocacy groups damaged the public health. Vaccine, 28(12), 2361-2362. https://doi.org/10.1016/j.vaccine.2010.02.052

Link DOI | Link Google Scholar

Puente, S.N., Maceiras, S.D., & Romero, D.F. (2021). Twitter activism and ethical witnessing: Possibilities and challenges of feminist politics against gender-based violence. Social Science Computer Review, 39(2), 295-311. https://doi.org/10.1177/0894439319864898

Link DOI | Link Google Scholar

Puri, N., Coomes, E.A., Haghbayan, H., & Gunaratne, K. (2020). Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Human Vaccines and Immunotherapeutics, 16(11), 1-8. https://doi.org/10.1080/21645515.2020.1780846

Link DOI | Link Google Scholar

Schmidt, A.L., Zollo, F., Scala, A., Betsch, C., & Quattrociocchi, W. (2018). Polarization of the vaccination debate on Facebook. Vaccine, 36(25), 3606-3612. https://doi.org/10.1016/j.vaccine.2018.05.040

Link DOI | Link Google Scholar

Serrano-Contreras, I.J., García-Marín, J., & Luengo, O.G. (2020). Measuring online political dialogue: Does polarization trigger more deliberation? Media and Communication, 8(4), 63-72. https://doi.org/10.17645/mac.v8i4.3149

Link DOI | Link Google Scholar

Spier, R.E. (2001). Perception of risk of vaccine adverse events: A historical perspective. Vaccine, 20(1), 78-84. https://doi.org/10.1016/S0264-410X(01)00306-1

Link DOI | Link Google Scholar

Subrahmanian, V., Azaria, A., Durst, S., Kagan, V., Galstyan, A., Lerman, K., Zhu, L., Ferrara, E., Flammini, A., & Menczer, F. (2016). The DARPA Twitter bot challenge. Computer, 49(6), 38-46. https://doi.org/10.1109/MC.2016.183

Link DOI | Link Google Scholar

Sued-Palmeiro, G.E., & Cebral-Loureda, M. (2020). Voces autorizadas en Twitter durante la pandemia de COVID-19: Actores, léxico y sentimientos como marco interpretativo para usuarios ordinarios. Revista de Comunicación y Salud, 10(2), 549-568. https://doi.org/10.35669/rcys.2020.10(2).549-568

Link DOI | Link Google Scholar

The American Journal of Managed Care (AJMC) (Ed.) (2020). A Timeline of COVID-19 Developments in 2020. https://bit.ly/3xZI7qk

Link Google Scholar

Tomeny, T.S., Vargo, C.J., & El-Toukhy, S. (2017). Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009-15. Social Science and Medicine, 191, 168-175. https://doi.org/10.1016/j.socscimed.2017.08.041

Link DOI | Link Google Scholar

Tornos-Inza, E. (2020). Tasa de interacción (engagement) en Twitter. Related: Marketing. https://bit.ly/3aSs9Vj

Link Google Scholar

Twitter (Ed.) (2021). Acerca de las cuentas verificadas de Twitter. https://bit.ly/3dGRmUF

Link Google Scholar

Vu, H.T., Do, H.V., Seo, H., & Liu, Y. (2020). Who leads the conversation on climate change? A study of a global network of NGOS on Twitter. Environmental Communication, 14(4), 450-464. https://doi.org/10.1080/17524032.2019.1687099

Link DOI | Link Google Scholar

World Economic Forum (Ed.) (2021). More people now plan to get a COVID-19 vaccine than in December. https://bit.ly/3r6cQ1f

Link Google Scholar

Xiong, Y., Cho, M., & Boatwright, B. (2019). Hashtag activism and message frames among social movement organizations: Semantic network analysis and thematic analysis of Twitter during the #MeToo movement. Public Relations Review, 45(1), 10-23. https://doi.org/10.1016/j.pubrev.2018.10.014

Link DOI | Link Google Scholar

Yang, S., Quan-Haase, A., & Rannenberg, K. (2017). The changing public sphere on Twitter: Network structure, elites and topics of the #righttobeforgotten. New Media & Society, 19(12), 1983-2002. https://doi.org/10.1177/1461444816651409

Link DOI | Link Google Scholar

Yelin, D., Wirtheim, E., Vetter, P., Kalil, A.C., Bruchfeld, J., Runold, M., Guaraldi, G., Mussini, C., Gudiol, C., Pujol, M., Bandera, A., Scudeller, L., Paul, M., Kaiser, L., & Leibovici, L. (2020). Long-term consequences of COVID-19: Research needs. The Lancet Infectious Diseases, 20(10), 1115-1117. https://doi.org/10.1016/S1473-3099(20)30701-5

Link DOI | Link Google Scholar

YouGov (Ed.). (2021). COVID-19 Public Monitor. COVID-19 Public Monitor. https://yougov.co.uk/COVID-19

Link Google Scholar

Zimmer, C., Corum, J., & Wee, S.L. (2021, January 11). Coronavirus vaccine tracker. The New York Times. https://nyti.ms/2NCtMxI

Link Google Scholar

Crossmark

Technical information

Received: 28-02-2021

Revised: 12-03-2021

Accepted: 27-04-2021

OnlineFirst: 15-06-2021

Publication date: 01-10-2021

Article revision time: 12 days | Average time revision issue 69: 30 days

Article acceptance time: 57 days | Average time of acceptance issue 69: 68 days

Preprint editing time: 169 days | Average editing time preprint issue 69: 180 days

Article editing time: 214 days | Average editing time issue 69: 225 days

Metrics

Metrics of this article

Views: 6975

Abstract readings: 5346

PDF downloads: 1629

Full metrics of Comunicar 69

Views: 63120

Abstract readings: 50908

PDF downloads: 12212

Cited by

Cites in Web of Science

Currently there are no citations to this document

Cites in Scopus

Currently there are no citations to this document

Cites in Google Scholar

Currently there are no citations to this document

Download

Alternative metrics

How to cite

Carrasco-Polaino, R., Martín-Cárdaba, M., & Villar-Cirujano, E. (2021). Citizen participation in Twitter: Anti-vaccine controversies in times of COVID-19. [Participación ciudadana en Twitter: Polémicas anti-vacunas en tiempos de COVID-19]. Comunicar, 69, 21-31. https://doi.org/10.3916/C69-2021-02

Share

           

Post Office Box 527

21080 Huelva (Spain)

Administration

Editorial office

Creative Commons

This website uses cookies to obtain statistical data on the navigation of its users. If you continue to browse we consider that you accept its use. +info X