Keywords
Machine learning, YouTube, social media, recommendation system, polarisation, communication
Abstract
Social media have established a new way of communicating and understanding social relationships. At the same time, there are downsides, especially, their use of algorithms that have been built and developed under their umbrella and their potential to alter public opinion. This paper tries to analyse the YouTube recommendation system from the perspectives of reverse engineering and semantic mining. The first result is that, contrary to expectations, the issues do not tend to be extreme from the point of view of polarisation in all cases. Next, and through the study of the selected themes, the results do not offer a clear answer to the proposed hypotheses, since, as has been shown in similar works, the factors that shape the recommendation system are very diverse. In fact, results show that polarising content does not behave in the same way for all the topics analysed, which may indicate the existence of moderators –or corporate actions– that alter the relationship between the variables. Another contribution is the confirmation that we are dealing with non-linear, but potentially systematic, processes. Nevertheless, the present work opens the door to further academic research on the topic to clarify the unknowns about the role of these algorithms in our societies.
References
Link DOI | Link Google Scholar
Almagro, M., & Villanueva, N. (2021). Polarización y tecnologías de la Información: Radicales vs. extremistas. Dilemata, 34, 51-69. https://bit.ly/38YwIiH
Arceneaux, K., & Johnson, M. (2010). Does media fragmentation produce mass polarization? Selective exposure and a new era of minimal effects. In A. Campbell, & L. Martin (Eds.), American Political Science Association 2010 Annual Meeting. SSRN. https://bit.ly/3M1e7jJ
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Berners-Lee, T. (2000). Tejiendo la red. Siglo XXI de España. https://bit.ly/3wZ1NMx
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Castells, M. (2001). La era de la información: Economía, sociedad y cultura. Alianza Editorial. https://bit.ly/3LXI18w
Chadwick, A. (2009). Web 2.0: New challenges for the study of e-democracy in an era of informational exuberance. I/S: A Journal of Law and Policy for the Information Society, 5(1), 9-41. https://bit.ly/3MZopSH
Chen, A., Nyhan, B., Reifler, J., Robertson, R., & Wilson, C. (2021). Exposure to alternative & extremist content on YouTube. Anti-Defamation League. https://bit.ly/3MZ19E9
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., & Zupan, B. (2013). Orange: Data mining toolbox. Python. The Journal of Machine Learning Research, 14(1), 2349-2353. https://bit.ly/3pMIPBR
Link DOI | Link Google Scholar
Goodrow, C. (2021). On YouTube’s recommendation system. Blog YouTube. https://bit.ly/3wWAxhA
Habermas, J. (1981). Historia y crítica de la opinión pública. Gustavo Gili. https://bit.ly/3O0JOv1
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Latorre, M (2022). Historia de la Web, 1.0, 2.0, 3.0 y 4.0. Blog Marino Latorre. https://bit.ly/38un7QH
Lilleker, D.G., & Jackson, N. (2008). Politicians and Web 2.0: The current bandwagon or changing the mindset? [Conference]. Politics: Web 2.0 International Conference.
Link DOI | Link Google Scholar
McLuhan, H.M. (1959). Myth and mass media. Daedalus, 88(2), 339-348. https://bit.ly/3GtIs9v
Link DOI | Link Google Scholar
Mohan, N. (2022). Inside responsibility: What’s next on our misinfo efforts. Blog YouTube. https://bit.ly/38XAngS
Link DOI | Link Google Scholar
O'Reilly, T., & Battelle, J. (2009). Web squared: Web 2.0 five years on. O'Reilly Media. https://bit.ly/3wYLBuG
Pariser, E. (2017). El filtro burbuja: Cómo la web decide lo que leemos y lo que pensamos. Taurus. https://bit.ly/3x0UyDX
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Link DOI | Link Google Scholar
Sunstein, C.R. (2007). Republic.com 2.0. Princeton University Press. https://bit.ly/3a3YFG8
Link DOI | Link Google Scholar
Tufekci, Z. (2018, March 20). YouTube, the great radicalizer. The New York Times. https://nyti.ms/38VTs2Y
Link DOI | Link Google Scholar
Wigand, R., Wood, J., & Mande, D. (2010). Taming the social network jungle: From Web 2.0 to social media [Conference]. AMCIS 2010 Proceedings. https://bit.ly/3NJF3Wl
Fundref
Technical information
Received: 30-05-2022
Revised: 21-06-2022
Accepted: 13-07-2022
OnlineFirst: 30-10-2022
Publication date: 01-01-2023
Article revision time: 22 days | Average time revision issue 74: 40 days
Article acceptance time: 44 days | Average time of acceptance issue 74: 69 days
Preprint editing time: 171 days | Average editing time preprint issue 74: 194 days
Article editing time: 216 days | Average editing time issue 74: 239 days
Metrics
Metrics of this article
Views: 24679
Abstract readings: 22956
PDF downloads: 1723
Full metrics of Comunicar 74
Views: 265648
Abstract readings: 242765
PDF downloads: 22883
Cited by
Cites in Web of Science
Barroso-Moreno, C; del Fresno-Garcia, M and Rayon-Rumayor, L. Inclusive employability and the role of social networks in digital society. A case study on Twitter, Instagram and YouTube Barroso-Moreno, C; del Fresno-Garcia, M and Rayon-Rumayor, L REVISTA ICONO 14-REVISTA CIENTIFICA DE COMUNICACION Y TECNOLOGIAS, 2023.
Cites in Scopus
Currently there are no citations to this document
Cites in Google Scholar
Currently there are no citations to this document
Alternative metrics
How to cite
García-Marín, J., & Serrano-Contreras, I. (2023). (Un)founded fear towards the algorithm: YouTube recommendations and polarisation. [Miedo (in)fundado al algoritmo: Las recomendaciones de YouTube y la polarización]. Comunicar, 74, 61-70. https://doi.org/10.3916/C74-2023-05